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Abstract

Value set analysis (VSA) is a static binary program analysis technique, which over-

approximates the set of possible values of each data object in the program at every program

point. Value set analysis can be used in binary code hardening and bug detection and thus

protect software systems, especially legacy software systems without source code access,

against program bugs such as notorious memory corruption bugs.

In this dissertation, we explore value set analysis in three categories of software defenses

- taint analysis, data race detection, and binary similarity analysis. Specifically, we first

present SelectiveTaint, an efficient static binary rewriting based, selective taint analysis

framework for binary executables. SelectiveTaint leverages value set analysis to conser-

vatively determine whether an instruction operand needs to be tainted or not, and then

selectively taints the instructions of interest. We show that SelectiveTaint is times faster than

that of the state-of-the-art taint analysis framework.

We also leverage value set analysis in data race detection of Intel SGX enclave binary

code. We observe that unlike a traditional data race which occurs non-deterministically, a

data race in SGX can be controlled, via manipulating thread creation, enclave call making,

and thread execution. We propose a static binary analysis framework that automatically

detect the controlled data races in enclave binary. Particularly, we systematically identify

the possible shared variables via value set analysis and then explore the concurrent enclave
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calls from both intended and unintended thread interleavings to detect whether a data race

can occur.

In addition to exploring value set analysis in taint analysis and data race detection, we

present vDiff, a novel binary code search framework that uses an architecture-generalized

value set as a signature to capture function semantics for binary similarity comparison. A

prototype implementation of vDiff searches binary code across five architectures (viz, x86,

x86-64, ARM, AArch64, and MIPS), which achieves higher accuracy.
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Chapter 1: Introduction

1.1 Overview

Value set analysis (VSA) is a static binary analysis technique, which uses abstract

interpretation to safely approximate the set of values of each data object at each program

point. As VSA does not assume the symbol information or debugging information is

available for the analyzed binary, VSA first needs to identify a set of data objects called

abstract location. By modeling binary memory layout, VSA partitions the whole memory

into three kinds disjoint memory regions, i.e., global, stack, and heap memory region, which

contains abstract locations identified by VSA. VSA assigns the memory region to each

instruction operand either based on the instruction semantics (e.g., an absolution addresses

instruction operand [0x800100] is assigned to global memory region), or conservatively

through data flow analysis(e.g., an instruction operand containing an data object allocated

in a malloc function is assigned to heap memory region). For each abstract location, VSA

computes a value set for its possible value. Conventionally, VSA represents a value set as

3-tuple, the elements of which are the range of offsets with respect to global, stack, and

heap memory region. For instance, the offset 0x4 with respect to the current stack memory

can be represented as (global→⊥,stack→ [0x4,0x4],heap→⊥), which can be further

abbreviated as (⊥, [0x4,0x4],⊥).
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VSA has been widely used in many important applications, such as software failure

diagnosis [37] and binary reassembling [112]. DEEPVSA [37] uses VSA on execution

traces recorded via hardware tracing to recover data flow for tracing down the root causes

of software crashes. Although VSA can perform alias analysis based on value set of each

abstract location, for the truncated traces generated software crashes, the lose of context and

over-approximation done by VSA limit its precision, and thus DEEPVSA facilitates VSA

with a neural network to improve the precision of alias analysis. Ramblr [112] explores VSA

in the symbolization of reassembling binary programs when source code is not available. In

binary reassembling, symbolization is the procedure that converts absolute addresses into

corresponding symbols and Ramblr improves the symbolization via a localized VSA, in

which an integer value is deemed to be a symbol when a deference of a pointer is dependent

on that integer value.

As shown in these aforementioned applications, value set analysis is becoming an

essential binary analysis technique as it can infer the possible values an abstract location

holds without the corresponding source code. We expect it will be further used in more and

more applications. We are particularly interested in exploring value set analysis in binary

code hardening and bug detection, as they are relevant defenses against emerging security

bugs. As binary code hardening is to analyze, modify binary code and thus protect binary

code from exploits and bug detection performed directly on binary code generally needs

to reason about the possible values in the binary, value set analysis can certainly kick in to

help the analysis in these two applications.

In this thesis, we explore value set analysis in three categories of software defenses -

taint analysis, data race detection, and also binary similarity analysis. Specifically, we

explore value set analysis in the following aspects:
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• Exploring Value Set Analysis for Selective Instrumentation in Taint Analysis.

Chapter 3 presents SELECTIVETAINT, the first selective static-binary-rewriting-based

taint analysis framework to instrument taint logic, largely mitigating the performance

overhead incurred by earlier DBI-based approaches. SELECTIVETAINT leverages a

conservative tainted instruction identification approach, which statically identifies the

instructions that will never involve tainted memory or registers by using VSA and

then conservatively taints the rest instructions.

• Exploring Value Set Analysis for Data Race Detection in Intel SGX Enclave

Binary. Chapter 4 presents SGX-RACER, the first static binary analysis tool for data

race detection in SGX programs, by systematically exploring the possible concurrent

ecalls from both intended and unintended thread interleavings to determine whether

a shared variable access can lead to a data race. We also present a set of enabling

techniques with binary analysis, including shared variable analysis, lock variable

analysis, synchronization primitive identification, and also a new lockset-based data

race detection algorithm particularly for SGX programs.

• Exploring Value Set Analysis for Capturing Program Semantics in Binary Sim-

ilarity Analysis. Chapter 5 presents VDIFF, a novel binary code cross search scheme

that leverages value-set analysis to capture the semantics of functions in a form that

is resilient to changes from architecture. VDIFF applies a key enabling algorithm to

refine the collected value sets and convert them into vectors, from which to compute

similarity metrics and rank the similarity of functions.
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1.2 Exploring Value Set Analysis for Selective Instrumentation in Taint
Analysis

One of the mostly used techniques in software security is dynamic taint analysis [81], also

called dynamic data flow tracking (DDFT), which tracks the data flow of interest during pro-

gram execution and has been widely used in many security applications, such as exploit de-

tection [15,38,81,82,87,90], information flow tracking [107,125], malware analysis [61,88,

121], and protocol reverse engineering [10, 102]. However, the implementation of taint anal-

ysis often has high performance overhead. For instance, a state-of-the-art dynamic taint anal-

ysis framework libdft [54] imposes about 4X slowdown for gzip when compressing a file.

There has been a body of research that seeks to improve the performance of taint analysis.

For instance, Jee et al. [49] applied compiler-like optimizations to eliminate redundant logic

in taint analysis code. SHADOWREPLICA [48] improved the performance by decoupling

taint logic from program logic, minimizing the information needed to communicate and

optimizing the shared data structures between them. TAINTPIPE [74] explored a parallelism

and pipeline scheme. STRAIGHTTAINT [73] combined an online execution state tracing and

offline symbolic taint analysis for further performance improvement.

Interestingly, these general DDFT frameworks and their optimizations all built atop

dynamic binary instrumentation (DBI), particularly Intel’s PIN [70], to instrument the

taint analysis logic at runtime. We believe a fundamental reason of using DBI for these

frameworks is to basically avoid the code discovery challenge from static binary analysis.

Note that PIN is a DBI tool, and it dynamically disassembles, compiles, and reassembles

the executed code at runtime without any code discovery issues. The core module of PIN is

a virtual machine (VM) that consists of a just-in-time (JIT) compiler, an emulator, and a
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dispatcher. PIN also has a rich set of APIs used for Pintool’s implementations. However, the

VM and APIs both add additional performance overhead to a taint analysis tool.

Unlike DBI, static binary instrumentation (SBI) inserts the analysis code directly into

the native binary and thus gets rid of the unnecessary DBI overhead incurred by such as

JIT and emulation. Meanwhile, SBI would have fewer context switches, since the rewritten

binary has a better code locality. While it is challenging to perform static binary analysis,

recently there are substantial advancements in static binary rewriting and reassembling (e.g.,

UROBOROS [113], RAMBLR [112], MULTIVERSE [5], and recently Datalog Disassem-

bly [33]). Therefore, it is worthwhile to revisit the taint analysis and study the feasibility of

using static binary rewriting for more efficient taint analysis.

Another common ground that existing taint analysis frameworks share is that they all

overly instrument the binary code at every possible instruction that can contribute the in-

formation flow, and they rely on the execution context to determine whether there is a need

to taint the corresponding operand. However, if a static analysis could figure out precisely

the instructions that will never get involved in taint analysis (e.g., via some conservative

static analysis), it would have not instrumented them. Therefore, enabling taint analysis to

selectively instrument the binary code statically is viable and highly desired.

We propose SELECTIVETAINT, an efficient selective taint analysis framework for binary

code with static binary rewriting. There are two salient features in SELECTIVETAINT. First,

it directly removes the overhead from dynamic binary translation, and is built atop SBI

instead of DBI. Second, it scans taint sources of interest in the binary, statically determines

whether an instruction operand will be involved in taint analysis by leveraging the value

set analysis (VSA) [3, 4], and then selectively taints the instructions of interest. There

are well-known challenges that SELECTIVETAINT must address, such as how to deal with
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point-to (i.e., alias) analysis inside binary code. SELECTIVETAINT solves this problem by

conservatively identifying the memory addresses that will never be involved in taint, and

then taint the rest.

We have implemented SELECTIVETAINT atop SBI and evaluated it with a variety of

applications consisting of the SPEC2006 CPUINT benchmark suite and network daemon

programs such as Nginx web server. The evaluation results show that SELECTIVETAINT

imposes significantly lower overhead than the current taint analysis framework such as

libdft. We also confirm that SELECTIVETAINT can detect real-world exploits against

the memory corruptions vulnerabilities in a variety of software including network daemon

programs.

1.3 Exploring Value Set Analysis for Data Race Detection in Intel SGX
Enclave Binary

Intel SGX allows programmers to protect application secrets in a hardware-isolated

trusted execution environment (TEE), without trusting the system software such as operating

systems and hypervisors. It provides the strongest security guarantee to an application to

date: any memory reads or writes to an enclave from other software are prohibited regardless

of their privileges. Unfortunately, Intel SGX is not absolutely secure, and it can still be

attacked from a variety of sources including hardware (e.g., the VoltJockey attack [91],

Rowhammer attack [47]), architectures (e.g., cache side channels [76]), operating systems

(e.g., controlled side channels [9, 119], Iago attacks [13]), and applications from the enclave

code itself (e.g., the buggy code to cause buffer overflow [60], use after free, double free,

or null pointer deference [55]). In response to these attacks, numerous defenses have been

proposed, particularly in defending against the side channel attacks with various approaches
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including hardware transaction memory [36, 100], data location randomization [7], and

oblivious memory primitives [96].

However, among the known defenses, none of them focuses on defeating one particular

category of attacks—the controlled data races. Unlike traditional data race which occurs

non-deterministically, a data race in SGX can be controlled. For instance, AsyncShock [116]

has demonstrated that by manipulating the thread scheduling, an attacker is able to reliably

exploit a TOCTOU bug to corrupt a shared variable from another thread between the

check and the use. Unfortunately, the problem goes beyond what has been identified by

AsyncShock since in SGX an intended single thread accessed variable can actually become

a shared variable unexpectedly if a malicious OS creates an unintended attack thread to

access it when the number of executed threads (i.e., TCSnum) for an enclave is configured

to be more than one. While the programmers might have known this enclave re-entrancy

attack, or at least to some extent, they may have failed to address it properly. Therefore, we

must identify the controlled data races in SGX programs before being exploited.

While we could identify the data races from program source code, such an approach

would depend too much on the programming languages used in the source code. Today,

SGX enclave programs can be developed from a variety of programming languages, such as

C/C++ with Intel SGX SDK, and Rust with Rust-SGX SDK. Thus, we may have to develop

a detector for each language. Second, source code analysis could face the issues of what you

see is not what you execute [4]. As such, a binary analysis based approach for detecting the

races would be more appealing if that is possible. On the other hand, intuitively, to detect

a data race it may require dynamic analysis to explore the thread interleavings. However,

dynamic analysis is known for path coverage and scalability issues.
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Therefore, we present SGX-RACER, a static binary analysis tool that systematically

identifies the possible shared variables and explores both the intended and unintended thread

interleavings in enclave code to inspect whether there are proper synchronizations on shared

variables. A data race is identified if there is a lack of synchronization primitives when

TCSnum is configured to be more than one. The key idea is to assume every ecall can run

concurrently with another ecall (including itself), given a strong privileged attacker who

can abuse enclave thread creation, ecall invocation, and fine-grained enclave code execution

control. At a high level, SGX-RACER contains two phases of analysis: variable analysis

phase and data race detection phase. The variable analysis phase recovers shared variables

and lock variables from enclave code and generates locksets and lock acquisition histories.

Data race detection phase considers each ecall to be possibly concurrent and performs a

lockset-based [52] data race detection.

To detect data races in SGX enclave binaries, we still face three challenges: (1) identi-

fying shared variables in the enclave binary, since identifying these variables needs compre-

hensive understanding of the binary instruction syntax and semantics; (2) identifying lock

variables in the enclave binary which involves identifying various synchronization primitives

used and even self-defined locks; (3) statically detecting data races in the face of concurrent

ecall reentrancy, since enclave code can be called arbitrarily concurrent (when TCSnum>1)

which introduces much more possible thread interleavings than a traditional computing

environment. To solve these challenges, we have designed a set of enabling techniques

including shared variable analysis, lock variable analysis, and synchronization primitive

identification atop data flow analysis with enclave binaries. We also propose a lockset-based

data race detection algorithm which assumes every ecall to be possibly concurrent.
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We implement SGX-RACER atop binary analysis framework angr [112]. Being a

binary analysis based solution, it allows SGX-RACER to analyze a variety of SGX binaries

developed from different programming languages such as C/C++, and Rust. We evaluate

SGX-RACER with open source SGX projects crawled from github.com and three popular

SGX SDKs, namely, Intel SGX SDK, Open Enclave SDK, and Rust-SGX SDK.

1.4 Exploring Value Set Analysis for Capturing Program Semantics
in Binary Similarity Analysis

Identifying binary code that is semantically equivalent but syntactically different across

different machine architectures, platforms, and compilers (including their optimization

levels) is crucial in many security applications, such as vulnerability and bug search [18,86],

malware detection [57], clustering [40], lineage tracing [46, 65], patch analysis [32, 53, 120],

and exploit generation [8]. This problem has become increasingly important for securing

the Internet of Things (IoT), due to reused (often vulnerable) code being recompiled and

redeployed across a wider range of machine architectures (e.g., x86, ARM, and MIPS).

Defenders often lack access to source code for these deployments, making it difficult to find

all instances of a vulnerability once vulnerable binary code on one architecture has been

identified.

However, binary code clone search is nontrivial, since multiple factors can diversify

even binaries compiled from the same source code. In particular, at the application level,

compilers often perform aggressive compiler optimizations to boost runtime performance;

at the platform level, compiled binaries have different binary headers and sections, different

system calls, and different application binary interfaces (ABIs); and at the architecture level,

9

github.com


compiled binaries use different instruction set architectures (ISAs), resulting in dissimilar

instruction sequences compiled from a common source.

Modern solutions to the code clone detection problem are typically either structure-based

or value-based. Structure-based approaches analyze code control-flow graphs and other

static structural information for similarities, such as by computing n-grams, instruction

mnemonics, and sub-graphs [56], or extended control-flow graphs (e.g., Genius [31] and

Gemini [118]). However, many aggressive, architecture-specific compiler optimizations

can greatly alter this structural information, impeding the detection of cross-architectural,

cross-platform, and cross-compiler/optimization clones.

Value-based approaches instead compare values stored by code into registers and memory

to assess similarity. These offer potential promise for higher-accuracy architecture- clone

detection, since code clones often compute the same values even if by vastly different

instruction sequences. Earlier efforts (e.g., VaPD [50] and BLEX [28]) have explored traced

variable values as signatures. Unfortunately, these approaches suffer from the coverage

limitations fundamental to dynamic approaches—not all paths can be explored, and not all

binaries can be executed (e.g., without a suitable environment or sensor input). While recent

advances have explored hybrid value-based approaches that combine symbolic execution

with program verification [16] or theorem proving [71], these suffer from scalability issues.

As a counterpoint to this ongoing research, this paper investigates a purely static value-

based approach to cross-architecture binary code clone detection, which has remained

surprisingly unexplored despite the increasing attention in the literature. A purely static

approach dodges the coverage problems faced by dynamic and hybrid approaches, potentially

making it more scalable in practice. However, it raises the key challenge of how to compute

meaningful variable values without resorting to low-coverage dynamic simulations. To solve
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this, we draw upon recent advances in value set analysis (VSA) [3], which is playing an

increasingly central role in binary analysis tools (e.g., angr [101]) and can achieve high

accuracy through deep learning (e.g., DeepVSA [37]). These recent innovations raise the

intriguing possibility of leveraging VSA for cross-architecture binary code search, which

we here explore.

The result of our investigation is VDIFF, a new binary clone cross-search approach using

VSA. Our key observation is that most functions compute value sets that show little variation

across architecture and platform changes and compiler optimizations. However, using VSA

for binary code search is by no means trivial. VDIFF must address numerous challenges,

such as uniting differing binary code syntaxes across different architectures, identifying and

eliminating architecture-specific value sets, and effectively comparing the refined value sets

with proper similarity metrics to expressively measure the similarity. We show that many of

these challenges can be addressed through a number of key insights. For example, many

architectural differences can be linked to differences in memory layout; removing all the

memory addresses from the results of VSA can therefore neutralize many architectural side

effects that otherwise impair similarity detection.

We have implemented a prototype of VDIFF, which currently supports five different

architectures (x86, x86-64, ARM, AArch64, and MIPS). At a high level, VDIFF first runs

VSA over each function to generate value sets, which are then refined by removing the

memory addresses and converted into a vector. Next, similarity metrics are computed

for every function search pair. Finally, the functions are sorted and ranked as similarity

candidates. We demonstrate the effectiveness of VDIFF by performing cross-architecture,
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cross-platform, and cross-compiler/optimization code search on a set of benchmark pro-

grams. The evaluation results demonstrate that VDIFF correctly ranks similar functions with

a high accuracy, especially when the targeted function has a large number of value sets.
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Chapter 2: Background

2.1 Value Set Anlaysis

Value set analysis (VSA) [3,4] is a static program analysis technique. It over-approximates

the set of possible values that each data object of the program could hold at each program

point, and it uses a value set to represent the set of memory addresses and numeric value

quantities.

Memory regions and abstract locations. VSA uses an abstract memory model that sepa-

rates the address space into multiple disjoint areas that are referred to as memory regions.

Memory regions in VSA consist of: a global region for memory locations storing unini-

tialized and initialized global variables, a stack region per function for memory locations

of activation record of a procedure, and a heap region per heap allocation for memory

locations allocated by a particular malloc-type of function call site. An abstract location,

i.e., an a-loc, is a variable-like entity which spans from one statically known location to next

statically known location, exclusively.

Abstract addresses and value sets. An abstract address in VSA is represented by a pair

(memory-region, offset). A set of abstract addresses, i.e., a value set, can be represented

using:

{i|rgni 7→ {oi
1,o

i
2, . . . ,o

i
ni
}}
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More specifically, when there are at most one stack memory region and one heap memory

region, the value set can be specified as 3-tuple [4]:

(global 7→ Og,stack 7→ Os,heap 7→ Oh)

abbreviated as (Og,Os,Oh). A set of memory offsets in each memory region is represented

by a strided-interval (SI): s[l,u] where s is the stride, l and u are lower bound and upper

bound. For instance, ({1,3,5},⊥,⊥) could be represented using SI as (2[1,5],⊥,⊥).

The analysis is performed on a control-flow graph (CFG) in which each node represents

an instruction (not a basic block as VSA is calculated for each instruction) and each edge

represents a control flow transfer. A transfer function that characterizes the instruction

semantics is associated with each edge. Note that since the address values and numeric

values are interleaved in the binary, VSA tracks address values and numeric values at the

same time.

2.2 Taint Analysis

Taint analysis is the process of tracking the flow of data of interest as they propagate

during the program execution. It is also referred as data flow tracking (DFT) or information

flow tracking (IFT). Static taint analysis (STA) is performed at compile-time without

executing the program and could reason about all possible paths [2, 94]. Dynamic taint

analysis (DTA) [81], also known as dynamic data flow tracking (DDFT), tracks the taint

propagation at run-time and is more precise. DTA is usually implemented using virtualization

or DBI. It can be performed per-process [54] or system-wide [121].

Taint tags are markings associated to registers and memory to indicate their taint status.

Taint tags can have different granularities and sizes. A specific taint analysis could use a tag

granularity at bit, byte, page, or file granularity. A finer granularity enhances taint analysis
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1 void process(int client_sock , char *buffer , int size)
2 {
3 char ch;
4 int read_size = recv(client_sock , buffer , 2048, 0);
5 if(read_size > 0)
6 {
7 ch = buffer [0];
8 if(ch >= 'a' && ch <= 'z')
9 buffer [0] = ch -32;

10 write(client_sock , buffer , read_size );
11 memset(buffer , 0, 1024);
12 }
13 }
14
15 int server(int client_sock)
16 {
17 int i = 0;
18 char buffer [1024] = {0};
19 for(i = 0; i < 3; i++)
20 {
21 process(client_sock , buffer , 1024);
22 }
23 return 0;
24 }

Figure 2.1: A taint propagation example.

precision but adds performance costs, e.g., the storage cost for tag-related data structure ,

whereas a coarse granularity offers less precision but better performance. Tag size can be a

single bit showing whether the corresponding registers or memory location is tainted or not,

or can also be multiple bits or bytes showing more tag information, such as which part of

the register or memory location is tainted by which part of the input (e.g., a particular byte

offset).
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A taint analysis typically consists of three components: taint sources, taint propaga-

tion, and taint sinks. In the following, we use a simplified networking program illustrated

in Figure 5.1a, as a running example, to demonstrate how a typical taint analysis works.

• Taint sources. Taint sources are program points or memory locations where data of

interest is introduced. Typically, taint analysis is interested in user input coming from

locally or remotely. For example, in Figure 5.1a, if we are interested in the remote

input, we will taint the data right after entering the system when calling libc function

recv at line 4 with the data stored in buffer.

• Taint propagation. Taint tags are propagated during the program execution according

to the taint propagation rules, which are specified with respect to the semantics of

each instruction, e.g., the specific operands in the instruction, and also the side-effect

of the instruction. For instance, for instruction ADD src, dst, a taint propagation

rule could specify that the new tag of dst is a bit-wise OR of the tags of src and

dst. In Figure 5.1a, at line 7 ch is assigned the tainted data of buffer[0] and at

line 9 buffer[0] is calculated based on tainted ch which has a data dependency,

whereas at lines 8-9 whether buffer[0] is assigned or not depends on the outcome

of the predicate in the if statement, which involves a tainted ch with a control

dependence between buffer[0] and ch. Note that most of the DDFT efforts (e.g.,

[48, 49, 54, 73, 74]) only consider taint propagation based on data dependencies.

• Taint sinks. Taint sinks are specific program instructions where taint analysis checks

the existence of taint tags of interest for various security applications such as detecting

control flow hijacks or information flow leakage. Common taint sinks are control flow

transfer instructions. In Figure 5.1a, line 10 is a taint sink, invoking libc function
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write that writes the content starting at buffer to client_socket. A user defined

taint policy could check whether the content sending to network is tainted (to detect

whether there is any secret data leaked to the client for instance).

2.3 Binary Instrumentation

Binary instrumentation is the process of instrumenting binary with additional analysis

code added and meanwhile maintaining the original functionality. It is a widely used

technique for many important security applications such as malware analysis and binary

code hardening. Binary instrumentation could be either static or dynamic.

Static binary rewriting. Static binary instrumentation (SBI), also known as static binary

rewriting, modifies the binary file directly. Static binary rewriting can be performed in

three ways [112]: (1) trampoline-based, (2) lifting and recompiling, (3) symbolization and

reassembling. Specifically, in trampoline-based approaches, hooks which detours the control

flow to trampolines are added to the binary. In contract, for lifting and recompiling, the

binary code will be first lifted into an intermediate representation (IR), then inserted with

the code of interest in the IR, and finally compiled back. The first two approaches have been

known in the community for years. Recently, symbolization and reassembling approach was

proposed, in which a rewriter needs to identify the locations pointed by memory references

first, and then symbolize those references. The process of converting numeric references

back to symbols is called symbolization. After symbolization, the rewriter could correctly

relocate binary in reassembling. The first two approaches impose significant overhead and

the last approach may mix code with data and may not correctly separate them.

Dynamic binary instrumentation. Dynamic binary instrumentation (DBI) recovers the

code while program is executing, which can correctly separate program code from data.
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Figure 2.2: Different binaries compiled from the same source code

However, compared with static approaches, DBI has high performance overhead. There

are generally two ways to implement DBI: using a trampoline, or using just-in-time (JIT)

compiling. The trampoline approach replaces the instruction with a trampoline at run-time

which jumps to the instrumented analysis code, and the JIT compiling approach dynamically

compiles the binary on the fly.

2.4 Intel Software Guard Extensions (SGX)

Software Guard eXtensions (SGX) [41, 42] is a hardware feature in Intel x86/64 CPUs

(since Skylake) to protect the confidentiality and integrity of application code and data, even

when privileged system software (e.g., OS) are compromised. The trusted component of

SGX application is executed inside an enclave, which is located in a protected memory

region called enclave page cache (EPC). Enclave code can access EPC and the memory
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outside enclave, but memory accesses to EPC from outside enclave are prohibited. A

memory encryption engine inside the processor encrypts and decrypts memory EPC cache

lines when they are written to and fetched from memory. There are two types of function

calls between trusted component and untrusted component: (1) entering enclave call (ecall),

through which the untrusted component makes an explicit call into an enclave, and (2)

outside of enclave call (ocall), by which trusted component calls untrusted functions outside.

2.5 Threading Support in Intel SGX

Multiple threads can be executed concurrently inside an enclave. Each thread has a

thread control structure (TCS) inside enclave, which contains control fields such as the

thread’s execution flag, the number of TCS (i.e., TCSnum), and the max number of TCS (i.e.,

TCSMaxNum), etc., specified in the configuration file. In addition, each thread has its own

thread local storage (TLS). A TCS page, stack, and thread local storage variables make up

the trusted execution context of a thread inside an enclave, whose state is saved to state save

area (SSA) when CPU encounters a hardware exception to avoid trusted execution context

revealed to untrusted software outside enclave.

However, thread creation inside enclave is not supported in SGX. A thread is first created

outside the enclave and then bound to a trusted thread execution context inside enclave.

The binding is controlled by untrusted code outside enclave and an enclave may have one

of the two binding policies: (1) Non-binding mode. Any available trusted thread context

is selected for an untrusted thread when a root call is made. “A root call is defined as an

enclave call that is not nested within another enclave call (or does not occur within the

context of an enclave out call)” [41, 42]. The same context is used for any nested enclave

calls and all thread local storage variables are reinitialized when a root call is made. (2)
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Binding mode. The same trusted thread context is bound to an untrusted thread when a root

call is made and all thread local storage variables are not reinitialized for each root call.

A variety of SGX SDKs, e.g., Intel’s SGX SDK [43], Microsoft’s Open Enclave

SDK [72], and Baidu’s Rust-SGX SDK [25], all provide synchronization primitives (e.g.,

sgx_spin_lock, and sgx_thread_mutex_lock in Intel SGX SDK) to support multi

threading inside enclaves. (A summary of the synchronization primitives and API functions

provided by these SGX SDKs can be found in Table 2.1. Each SGX SDK also allows

enclave developers to define TCS-related parameters in enclave configuration file, e.g.,

TCSNum, TCSMaxNum, the minimum number of available TCS during the lifecycle of an

enclave TCSMinPool, and TCS binding policy TCSPolicy.
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SGX SDKs Sync. Primitive Function

Intel SGX SDK

Spinlock
sgx_spin_lock
sgx_spin_unlock

Mutex
sgx_thread_mutex_lock
sgx_thread_mutex_trylock
sgx_thread_mutex_unlock

Condition Variable
sgx_thread_cond_wait
sgx_thread_cond_signal
sgx_thread_cond_broadcast

Open Enclave SDK

Thread-once oe_pthread_once

Spinlock
oe_pthread_spin_lock
oe_pthread_spin_unlock

Mutex
oe_pthread_mutex_lock
oe_pthread_mutex_trylock
oe_pthread_mutex_unlock

Read-write Lock
oe_pthread_rwlock_rdlock
oe_pthread_rwlock_wrlock
oe_pthread_rwlock_unlock

Condition Variable
oe_pthread_cond_wait
oe_pthread_cond_signal
oe_pthread_cond_broadcast

Rust-SGX SDK

Thread-once
Once::call_once
Once::call_once_force

Barrier Barrier::wait

Spinlock
SgxThreadSpinlock::lock
SgxThreadSpinlock::unlock

Mutex

SgxThreadMutex::lock
SgxThreadMutex::trylock
SgxThreadMutex::unlock
SgxThreadMutex::unlock_lazy

Reentrant Mutex
SgxReentrantThreadMutex::lock
SgxReentrantThreadMutex::trylock
SgxReentrantThreadMutex::unlock

Read-write Lock

SgxThreadRwLock::read
SgxThreadRwLock::try_read
SgxThreadRwLock::write
SgxThreadRwLock::try_write
SgxThreadRwLock::read_unlock
SgxThreadRwLock::write_unlock

Condition Variable

SgxThreadCondvar::wait
SgxThreadCondvar::wait_timeout
SgxThreadCondvar::signal
SgxThreadCondvar::broadcast
SgxThreadCondvar::notify_one
SgxThreadCondvar::notify_all

Table 2.1: Synchronization primitives and functions in SGX SDKs
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2.6 Concurrency Vulnerabilities

A concurrency vulnerability can occur due to multi-threading (which is enabled by multi-

core computer architectures). A variety of concurrency vulnerabilities have been discovered

over the years, such as data race [14, 26, 29, 80, 83, 97], atomicity violation [67, 69], and

dead locks [29]. These vulnerabilities are prevalent in multi-threaded programs [68] and are

notoriously hard to detect due to their non-deterministic natures.

Particularly, a data race occurs in a multi-threaded program if two threads access the same

memory location without considering the ordering constraints between the two accesses,

and also at least one access is a write. Moreover, a data race is challenging to be observed

since a program can exhibit different behaviors when repeated even with the same input.

Furthermore, a data race often quietly violates programmer’s intention without causing a

crash and could be noticed much later from the root cause.

To detect a data race, there are two typical approaches: (1) lockset based approach [97],

which detects a data race if two threads access a memory location without holding a common

lock, and (2) happens-before based approach [26], which detects a data race if two accesses

from different threads are not ordered based on Lamport’s happens-before relation [59].

2.7 Controlled Data Race Attack in Enclave Code

Controlled data race attack can be launched when TCSnum is greater than one. At a high

level, there are three steps to carry out this attack as illustrated in Figure 2.3: Step ¬–the

attacker creates an untrusted thread which will be bound to the context of trusted enclave

threads later, Step ­–the attacker makes ecalls in each created thread at his/her choice to

enable concurrent execution of trusted enclave threads, and Step ®–the attacker forces the
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Figure 2.3: Illustration of controlled data race attacks

occurrence of a controlled data race by making the concurrent threads to synchronize at

specific program points via interrupts or (controlled) page faults for example.

Therefore, the exploited data race is actually different from traditional data races, since

they can be controlled in a deterministic manner by a malicious OS. They are extremely

dangerous for the following three reasons. First, thread creation in SGX is not supported

by the enclave itself, and instead it is controlled by OS. This is due to the reason that

enclave applications are partitioned in a way [42, 64] that the size of its trusted computing

base (TCB) is minimized and thread management is out of its TCB. As such, it provides

a malicious OS the capabilities to create an arbitrary number of threads to attack a victim

process. Second, an enclave call (ecall) has no ordering guarantee [42] and it can be

called in an arbitrary order. A malicious OS can deliberately create multiple threads to

trigger the same ecall, so that any instruction accessing global or shared heap variables may

become reentrant, potentially causing data races. Third, unlike in traditional settings, an
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enclave thread execution can be precisely controlled by a malicious OS using either page

faults [119] or APIC timer interrupts [108, 109], The attacker could even cause single-step

enclave execution at the granularity of instruction level, which leaves ample room for them

to synchronize two threads precisely at any point of their execution and thus cause controlled

data races.

The root cause of controlled data races is that a portion of the enclave code is non-

reentrant. Unlike traditional programs, enclave programs are under the management of an

untrusted OS, which controls the thread creation, the entrance of ecalls, and the interrupt

and resumption of execution at any point. A controlled data race attack could also target an

intended single-threaded enclave program, if the malicious OS can create multiple threads

and allow each of the threads to instantiate the single-threaded enclave code (e.g., via calling

ecalls). In this way, any global variable used in a single-threaded enclave program now

accidentally becomes shared by these concurrent threads when TCSnum>1. It is likely that

many developers could make such mistakes.

2.8 Root Causes of Binary Code Differences

There could be numerous factors that can contribute to the differences of the final binary

code. Based on how a program is compiled and executed, we can summarize these factors

into three categories as shown in Figure 2.2, from application level, to operating system

level, and to architecture level.

Application level. Program source code needs to be first compiled. Different compilers

may have different code generation strategies, and even for the same compiler, it can

also use different optimization levels. For instance, compilers typically perform a series

of optimization transformations that produce semantics-equivalent code yet consuming
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fewer resources or running faster. Compiler optimizations span different levels and typical

optimizations include but not limited to: (1) peephole optimizations that inspect multiple

adjacent instructions and replace them with a short and faster sequence of instructions; (2)

local optimizations that are fast optimizations only examining instructions within basic block

boundaries; (3) global optimizations that operate on whole functions, where function calls

and global variable accesses may occur; (4) loop optimizations that examine the instructions

within loops, which could improve cache performance and parallelism; (5) inter-procedural

optimizations that consider all instructions and generally take place at link time.

Operating system level. Different operating system platforms (e.g., Linux and Windows)

have different binary loaders and thus use different binary file formats (e.g., ELF format

in Linux and PE format in Windows). These formats contain data structures to help

binary loaders to manage the executable code, which generally consist of multiple headers

and sections. Typical sections are .text and .data, which contain program code loaded

with executable/read permissions and global data loaded with non-executable/read/write

permissions. Besides the data structure differences in different binary file formats, the main

platform dependencies come from application binary interface (ABI) and system calls [58].

For instance, Linux dispatches system call through instruction INT 0x80, or virtual dynamic

shared object (VDSO), whereas Windows system calls are made by calling APIs, such as

NtCreateFile and NtOpenFile.

Architecture level. Semantics-similar source code or even the same source code can have

vastly different binary code on different architectures. There are many reasons to cause the

differences, and these include: (1) Reduced instruction set computer (RISC) vs. complex

instruction set computer (CISC). RISC architectures embrace the philosophy of having a

few simple and general instructions instead of a large number of complex and specialized
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instructions as in CISC architectures. RISC architectures are also load-store architectures,

in which binary code tends to contain multiple load and store instructions. For the five

architectures supported by VDIFF, x86 and x86-64 are CISC architectures and the other

three are RISC architectures. (2) Registers. Each architecture offers different kinds and

number of registers, e.g., ARM has 30 general purpose registers while x86 has just 8 32-bit

general purpose registers, and ARM also has a link register that stores the return address

whereas x86 does not have a peer link register. (3) Instruction opcode. For instance, ARM

has the BL instruction (branch with link) which calls subroutine and saves the return address

in the link register, while x86 uses the call instruction which stores the return address on

the stack. (4) Instruction operands. For example, the ADD instruction takes three operands

in ARM but only takes two operands in x86. (5) Word size. ARM, x86, and MIPS have a

32-bit word size while AArch64 and x86-64 have a 64-bit word size. (6) Endianness. For

instance, x86 is little-endian, and MIPS is bi-endian (it can also be configured in either big

or little endian).
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Chapter 3: Exploring Value Set Analysis for Selective Instrumentation

in Taint Analysis

3.1 Motivation

Taint analysis has been widely used in many security applications such as exploit de-

tection, information flow tracking, malware analysis, and protocol reverse engineering.

State-of-the-art taint analysis tools are usually built atop dynamic binary instrumentation,

which instruments at every possible instruction, and rely on runtime information to decide

whether a particular instruction involves taint or not, thereby usually having high perfor-

mance overhead. This paper presents SELECTIVETAINT, an efficient static binary rewriting

based, selective taint analysis framework for binary executables. The key idea is to use static

binary rewriting instead of dynamic binary instrumentation to selectively instrument the

instructions involving taint analysis. At a high level, SELECTIVETAINT scans taint sources

of interest in the binary, leverages value set analysis to conservatively determine whether an

instruction operand needs to be tainted or not, and then selectively taints the instructions of

interest.
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3.2 Challenges

To clearly illustrate the challenges of selective taint analysis, we still use the example

code shown in Figure 5.1a. This program receives three messages from a client (line 19-22),

capitalizes the first character in each message if needed (line 8-9), and sends the messages

back to the client (line 10). It has a buffer overflow vulnerability at line 4, when receiving

the input with size larger than 1024 bytes. The taint source of our interest is the network

input stored in array buffer, which is tainted by libc function recv. The taint sink of

our interest is the control flow transfer instruction ret of function server at line 23 of

Figure 5.1a, assume our objective is to detect the control flow hijacks.

Performing selective binary code taint analysis using static binary rewriting is by no

means trivial. Unlike DBI-based approaches where taint analysis logic is instrumented at

runtime, a SBI-based approach has to analyze and rewrite the binary statically. In addition

to the challenges from static binary disassembling and rewriting (they are orthogonal to

our problem and they should be solved separately), SELECTIVETAINT has to address at

least the following unique challenge—how to determine whether a disassembled instruction

needs to be instrumented by taint analysis. If so, we will rewrite it accordingly based on the

taint semantics (e.g., whether this instruction introduces a taint sources, contributes to taint

propagation, or it is a taint sink).

Essentially, the problem becomes how to determine the taintedness of an instruction

according to its operands including both memory addresses and registers without executing

the binary. Determining the taintedness of registers is easier compared to memory addresses,

since registers can be directly identified based on names whereas a memory address cannot

be easily resolved. Therefore, determining the taintedness for memory addresses is much

harder in SBI. More specifically, different from DTA in which a memory address has a single
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runtime address at each program point, static binary taint analysis can only conservatively

infer the possible values for a symbolic memory address at each program point. Except

for global memory addresses, symbolic addresses of stack and heap are only in relative

addresses when performing the static analysis. In addition, there are also unknown inputs

(from a command line, local files and keystrokes, or remote network packet) that also make

the problem hard.

3.3 A Running Example

It is obvious that in order to address the aforementioned challenges, it requires the

inference of possible values of both registers and memory cells at each program point.

Fortunately, a key technique in this direction is the VSA [3, 4], which seeks to compute the

possible values at each symbolic memory address and register. Therefore, with VSA, we

could determine whether a particular memory address or register involves taint or not, e.g.,

whether it is an alias to the address of our interest, or it will hold the propagations of the

tainted data.

To see exactly how VSA helps our analysis, we show the value set analysis results of our

running example along with its assembly code in Table 3.1. At the beginning of function

server, the initial esp has a value set of (⊥, 0x0, ⊥). After executing push instruction at

0x8048687, esp has a value set of (⊥, -0x4, ⊥). The analysis continues, and computes the

rest of the VSA for each register and memory operand. Now with the computed VSA, we

can easily see that ebx at 0x80486a9 and eax at 0x80486c6 have the same value sets (⊥,

-0x410, ⊥), and thus these two registers are actually aliased. In fact, both of them refer to

the address of the local variable buffer defined in function server.
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Assembly Value Set Examples Assembly Value Set Examples
<server>: <process>:
8048687 push %ebp esp:(⊥,-0x4,⊥) 80485fd push %ebp ebp:(⊥,-0x434,⊥)
8048688 mov %esp,%ebp ebp:(⊥,-0x4,⊥) 80485fe mov %esp,%ebp ebp:(⊥,-0x434,⊥)
804868a push %edi 8048600 sub $0x28,%esp esp: (⊥,-0x45c,⊥)
804868b push %ebx 8048603 movl $0x0,0xc(%esp)
804868c sub $0x420,%esp esp:(⊥,-0x42c,⊥) 804860b movl $0x800,0x8(%esp) buffer size:(0x800,⊥,⊥)
8048692 movl $0x0,-0xc(%ebp) 8048613 mov 0xc(%ebp),%eax
8048699 lea -0x40c(%ebp),%ebx 8048616 mov %eax,0x4(%esp) buffer addr:(⊥,-0x410,⊥)
804869f mov $0x0,%eax 804861a mov 0x8(%ebp),%eax
80486a4 mov $0x100,%edx 804861d mov %eax,(%esp)
80486a9 mov %ebx,%edi ebx:(⊥,-0x410,⊥) 8048620 call 80484f0<recv@plt> Vu= S - (⊥,[-0x410,0x3f0],⊥)
80486ab mov %edx,%ecx 8048625 mov %eax,-0xc(%ebp)
80486ad rep stos

%eax,%es:(%edi)
8048628 cmpl $0x0,-0xc(%ebp)

80486af movl $0x0,-0xc(%ebp) 804862c jle 8048685
80486b6 jmp 80486d9 804862e mov 0xc(%ebp),%eax
80486b8 movl $0x400,0x8(%esp) 8048631 movzbl (%eax),%eax
80486c0 lea -0x40c(%ebp),%eax 8048634 mov %al,-0xd(%ebp)
80486c6 mov %eax,0x4(%esp) eax:(⊥,-0x410,⊥) 8048637 cmpb $0x60,-0xd(%ebp)
80486ca mov 0x8(%ebp),%eax 804863b jle 8048651
80486cd mov %eax,(%esp) 804863d cmpb $0x7a,-0xd(%ebp)
80486d0 call 80485fd<process> 8048641 jg 8048651
80486d5 addl $0x1,-0xc(%ebp) 8048643 movzbl -0xd(%ebp),%eax
80486d9 cmpl $0x2,-0xc(%ebp) 8048647 sub $0x20,%eax
80486dd jle 80486b8 804864a mov %eax,%edx
80486df mov $0x0,%eax 804864c mov 0xc(%ebp),%eax
80486e4 add $0x420,%esp 804864f mov %dl,(%eax)
80486ea pop %ebx 8048651 mov -0xc(%ebp),%eax
80486eb pop %edi 8048654 mov %eax,0x8(%esp)
80486ec pop %ebp 8048658 mov 0xc(%ebp),%eax inst. is tainted, as (⊥,-0x410,⊥) * Vu

80486ed ret 804865b mov %eax,0x4(%esp)
804865f mov 0x8(%ebp),%eax
8048662 mov %eax,(%esp)
8048665 call 80484a0<write@plt>
804866a movl $0x400,0x8(%esp)
8048672 movl $0x0,0x4(%esp)
804867a mov 0xc(%ebp),%eax
804867d mov %eax,(%esp)
8048680 call 80484c0<memset@plt>
8048685 leave
8048686 ret

Table 3.1: The running example assembly code snippets.

To statically analyze which instructions need to be tainted, a straw-man approach is

to statically maintain tainted value sets (i.e., value sets of registers and symbolic memory

that need to be tainted) at each program point. In particular, this approach checks whether

value sets of all operands in an instruction are subsets of the tainted value set, if so, this

instruction is added into the tainted instruction set, the register or symbolic memory of the

corresponding operand is added to the tainted value sets if the taint will be propagated to

this operand, and the corresponding taint rule is instrumented to taint this instruction.
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However, when analyzing real-world binaries, VSA may lose its precision due to various

factors such as imprecise CFG, sophisticated static point-to analysis (which is an undecid-

able problem [93]), and unknown inputs. Consequently, as illustrated in Figure 3.1, we

may not be able to get the ideal tainted instruction set I for the instructions that need to

be tainted, and instead the VSA identified must-tainted instruction set It can have false

negatives because of the imprecision mentioned. On the other hand, by using VSA, we can

also identify must-not-tainted instruction set Iu that will never be involved in taint analysis.

Therefore, in order not to have any false negatives (no missing of attacks) when using taint

analysis, we eventually decide to taint the instructions that are not in the Iu, though the

worst case is we can taint all instructions similarly to all DBI-based taint analysis. Our key

objective is to confidently enlarge Iu as much as possible.

As in our running example, in Table 3.1, the instructions in light gray are identified

as in must-not-tainted instruction set Iu, the instructions in dark gray are identified as in

must-tainted instruction set It , and all instructions not in light gray are our conservatively

tainted instructions. For each instruction, a must-not-tainted value set Vu is maintained

and if value sets of all operands in an instruction are subsets of Vu, the instruction is

added to Iu. For instance, for instructions at 0x804861a and 0x804861d before taint

introduction at 0x8048620, must-not-tainted value set Vu equals value set S , which contains

all possible values at this execution point (recall VSA is flow sensitive analysis). At taint

source 0x8048620, must-not-tainted value set Vu is updated by removing value set (⊥,[-

0x410,0x3f0],⊥) from Vu, as the tainted buffer starts at (⊥, −0x410, ⊥) with a buffer

length 0x800. At 0x8048658, [ebp+0xc] has value set (⊥, -0x410, ⊥), which is not a

subset of must-not-tainted value set Vu and thus this instruction is not added to Iu and

is instrumented. Eventually SELECTIVETAINT will conservatively taint all instructions
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𝐼௨: must-not-tainted insn. 

𝐼௧: must-tainted insn.

I: ideally-tainted insn.

Figure 3.1: The Essence of SELECTIVETAINT.

not in Iu, i.e., instructions not in light gray, which consists of all instructions in It , i.e.,

instructions in dark gray, with five additional instructions in white.

Scope and Assumptions. In this work, we focus on x86 binaries with ELF format running

atop Linux platform. We assume the binary code is not obfuscated, and we are able to get

their correct disassembly. For proof-of-concept, we demonstrate the use of DTA to track the

untrusted user input through static binary rewriting, and detect the memory exploits by just

using a single bit (tainted or not) in our taint record. Also, our static binary rewriting is based

on Dyninst [6]. While it is not perfect, it has been widely used in building many static binary

rewriting-based prototypes, e.g., TypeArmor [111], BinArmor [103], PathArmor [110],

MARX [84], and most recently UnTracer [79].

3.4 Detailed Design

In this section, we present the detailed design of SELECTIVETAINT. As illustrated

in Figure 3.2, there are four key components inside:
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Figure 3.2: Overview of SELECTIVETAINT.

• CFG Reconstruction (§3.4.1). When given an application binary code, we will first

rebuild its CFG starting from the main function. If there is a library call, we will

resolve the calling target and use the function summaries to decide whether further

instrumentation of the library is needed. If an indirect jmp/call is encountered, we

will perform backward slicing [112] and use the VSA and type information to resolve

the target.

• Value Set Analysis (§3.4.2). VSA [3] has become a standard technique in static

binary analysis for determining the possible values of a register or a symbolic memory

address. We use the VSA to help identify the instruction operands that are never

involved in the taint analysis.

• Taint Instruction Identification (§3.4.3). Selective tainting essentially aims to iden-

tify the instructions that are involved in the taint analysis. With the identification of

Iu by VSA, we then start from the instructions that introduce the taint sources, and

systematically identify the rest of instructions that are not in Iu.

• Binary Rewriting (§3.4.4). Once the instructions have been identified, we then use

the static binary rewriting to insert the taint analysis logic including tracking of the

taint sources and taint propagations as well as the taint checks at the taint sinks.
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3.4.1 CFG Reconstruction

The first step of SELECTIVETAINT is to rebuild the CFG, when given an application

binary. This is quite a standard process and the only additional challenge is to identify the

control flow targets of the indirect calls and jumps, as they are important to compute the VSA.

To get the CFG, we first reconstruct the possible control flow targets using Ramblr [112]

approach, and in case of undecided target (e.g., jmp/call eax), we use the following

approaches:

Handling Indirect Call. We adopt and implement two forward-edge CFI identification

approaches, namely TypeArmor [111] and τCFI [77], to recover the type information (i.e.,

parameter count and parameter type) about actual and formal parameters at the callsites and

callee functions. By connecting the matching callsites and callees regarding these type infor-

mation, we build a CFG which is an over-approximation of actual CFG. The type information

is generated by running liveness analysis at indirect callsites and use-def analysis at callees.

Handling Indirect Jump. We first use our implemented VSA to resolve the indirect jump

target and connect the jump target if it is solved. Otherwise, we determine whether the

function that contains the indirect jump uses any external data references (e.g., global

variable addresses): if not, we connect all of the possible basic block starting address in this

function as the potential jump target (we still consider it local); otherwise, we connect the

jump target with all function entry addresses. The rationale is we notice all inter-procedural

jumps we encountered are from compiler optimizations, and basically compiler optimizes

the call instruction with an indirect jump. We therefore connect the indirect jump in this

way to get an over-approximation of the CFG.
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3.4.2 Value Set Analysis

Our VSA Algorithm. A key technique inside SELECTIVETAINT is the VSA [3], which is

a context-sensitive and flow-sensitive whole program analysis. As described in algorithm 1,

our whole_program_VSA first initializes the ValueSet for each instruction in the program

with an initial esp, initial empty heap, and initial memory cell values resolved from original

binary. Then, function VSA is called to analyze each function func, which is of work list

style with multiple iterations on each individual instruction until no changes are discovered

(fixed point is reached). The context and value sets are adjusted depending on the type of

instruction opcode, e.g., for call/ret instruction, inter-procedural analysis is performed

and the environment is adjusted accordingly including changing the current stack region

and matching formal and actual parameters value set are carried out.

Practical Challenges. While the idea of calculating VSA is simple, it has a number of prac-

tical challenges when used for data flow tracking, such as context-sensitive, flow-sensitivity,

and alias analysis. In the following, we describe these challenges and also how we have

addressed them below:

(I) Handling context-sensitivity. It will be overly complicated if a function is called mul-

tiple times when performing the inter-procedureal analysis in a CFG. We therefore augment

our VSA with a cloning-based context sensitivity analysis [117]. Basically, we have a

separate analysis for each function clone per calling context. More specifically, we generate

a function clone for every acyclic path through a program call graph and, for cyclic paths,

we merge all functions in a strongly connected component to have a single function context

for them as in [117].
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Algorithm 1 Whole Program Value Set Analysis
Function whole_program_VSA(CFG, ValueSet):

input :control flow graph CFG, value set ValueSet
output :ValueSet[i] for each instruction i

1 ValueSet, context← init()
VSA(entryFunc, context)

Function VSA(CFG, ValueSet, func, context):
input :control flow graph CFG, value set ValueSet, function func, context
output :ValueSet[i] for each instruction i

2 worklist← {entryInst}
while worklist 6= /0 do

3 i← pop(worklist)
if callInst(i) then

4 newContext← adjustContext(context, callee(i))
VSA(CFG, ValueSet, callee(i), newContext)

5 if retInst(i) then
6 adjustContext(context, caller(i))
7 if condInst(i) then
8 ValueSetiexitn ← ValueSetientry uV S ValueSetcn

9 else
10 if uninitialized(opi) then
11 ValueSetiexit [addr(opi)]← (>,>,>)
12 newValueSetiexit ← EXE(i,

⊔
entryn∈entry

ValueSetientryn )

if newValueSetiexit 6= ValueSetiexit then
13 ValueSetiexit ← ValueSetiexit t newValueSetiexit

push(worklist, succs(i))

(II) Handling flow-sensitivity. Since VSA is flow-sensitive and per-instruction, it is an

engineering challenge to inspect each instruction statically. We therefore borrow the idea of

how symbolic execution interprets each instruction and updates the corresponding symbolic

states. Essentially, when perform our flow sensitivity analysis, we need to interpret each

instruction, and updates the VSA based on its semantics. Since symbolic execution is well

studied (with many open source tools), we do not describe how we implement our interpreter

and instead we abstract it as a simple EXE (line 18) in algorithm 1, which is responsible to

capture the value set changes for each analyzed instruction (working as a transfer function

in static analysis).
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(III) Handling a-locs with unknown values or addresses. Performing VSA on binary

suffers from the lack of dynamic information (e.g., calling context, and concrete memory ad-

dresses). One major issue when applying VSA on real-world binary is uninitialized variables

and their aliases. Among these uninitialized variables, some are used in address calculation,

which leads to a-locs with unknown addresses. To conservatively taint instructions, we need

to infer the value set of these unknown addresses; otherwise the reads and writes to them

would indicate the reads and writes to the whole address space.

In case VSA encounters an a-loc with uninitialized value or address due to system inputs

for instance, the special handling is shown in lines 16-17 in algorithm 1. In particular,

our analysis will assume the uninitialized a-loc to have any value, i.e., with the value set

(>,>,>). The cases which VSA cannot determine the address are:

• Unknown values from command line input (CLI), e.g., argv[]. The argv ele-

ments are pointers which is uninitialized at analysis-time. As shown in Figure 3.3a,

instruction at 0x8048745 reads argv[1] which is unknown at analysis-time.

• Unknown addresses or values passed from missing callers. Even we use ap-

proaches such as TypeArmor to recover CFG, there are still some callee functions

without callers and the calling context is missing for these callee. As shown in Fig-

ure 3.3b, the function Perl_do_open9 has no identified callers, and thus, the value

of parameter at instruction 0x804e9bb is uninitialized.

• Unknown addresses or values due to library functions and system calls. For in-

stance, fopen function returns a pointer which is a pointer to FILE struct that is

uninitialized at analysis-time as illustrated in Figure 3.3c.

37



429. mcf
080486 d0 <main >:
80486d0: push %ebp
80486d1: mov %esp ,%ebp
...
8048730: mov 0xc(%ebp),%eax
8048733: movl $0xc8 ,0x8(%esp)
804873b: movl $0x989680 ,0 x804e890
8048745: mov 0x4(%eax),%eax

(a) Entry-function uninitialized variable

400. perlbench
0804 e9b0 <Perl_do_open9 >:
804 e9b0: sub $0x3c ,%esp
804 e9b3: lea 0x5c(%esp),%eax
804 e9b7: mov %eax ,0x1c(%esp)
804 e9bb: mov 0x58(%esp),%eax
804 e9bf: movl $0x1 ,0x20(%esp)
804 e9c7: mov %eax ,0x18(%esp)
804 e9cb: mov 0x54(%esp),%eax
804 e9cf: mov %eax ,0x14(%esp)
804 e9d3: mov 0x50(%esp),%eax
804 e9d7: mov %eax ,0x10(%esp)
804 e9db: mov 0x4c(%esp),%eax
804 e9df: mov %eax ,0xc(%esp)
804 e9e3: mov 0x48(%esp),%eax
804 e9e7: mov %eax ,0x8(%esp)
804 e9eb: mov 0x44(%esp),%eax
804 e9ef: mov %eax ,0x4(%esp)
804 e9f3: mov 0x40(%esp),%eax
804 e9f7: mov %eax ,(%esp)

(b) Incomplete CFG caused uninitialized variable

429. mcf
08048 fe0 <read_min >:
8048 fe0: push %ebp
8048 fe1: push %edi
8048 fe2: push %esi
8048 fe3: push %ebx
8048 fe4: sub $0x12c ,%esp
...
8049010: call 8048670 <fopen@plt >
8049015: test %eax ,%eax
8049017: mov %eax ,0x38(%esp)

(c) fopen uninitialized variable

Figure 3.3: Uninitialized variable examples in whole program VSA.
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3.4.3 Taint Instruction Identification

After our whole program VSA analysis, we next need to identify the instructions that

need to be instrumented for the taint analysis with the computed VSA. To this end, we have

to decide whether a memory address involves taint or not, which essentially leads to problem

of point-to (i.e., alias) analysis. However, due to the imprecision with the static point-to

analysis, we may not be able to resolve all memory addresses with VSA [3, 4], and instead

we focus on identifying the addresses that will never be involved in taint analysis for each

specific instruction (since VSA is flow sensitive). Initially, all instructions will be marked

tainted (i.e., they will all be instrumented for taint analysis). As described in §3.3, our key

objective is to minimize this set, by identifying and enlarging the must-not tainted set. In

the following, we describe how we achieve this.

3.4.3.1 Must-not Tainted Analysis

In order to statically identify instructions never involved in taint analysis, we should

know the must-not tainted value set, which is an opposite, more conservative counter-part

of the intuitive tainted value set, at each program point. This is also a data flow analysis

problem, and we have to inspect each instruction to decide whether its operand will never

be involved in taint or not.

Identification Policy. Must-not-tainted set is based on the following policy: (1) instructions

unreachable from taint sources are removed from the must-not-taint set, e.g., the instructions

at the beginning of the program to the first instruction that introduces the taint source (which

is one of the big differences compared to DBI-based taint implementations); (2) instructions

with operands of potentially tainted or unknown value sets are removed from must-not-taint

set; (3) instructions whose operands hold literal values are added to must-not-taint set since
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none of the operands will be tainted, e.g., instruction inc eax with eax containing a literal

value is added to must-not-taint set; (4) instructions whose opcode indicates it will not be

involved in taint propagation are added to must-not-taint set, e.g., control-flow instructions

(e.g., jmp) and compare and test instructions (e.g., cmp, and test). The must-not tainted

value set will propagate along with data flow, and it is a must analysis.

Resolving operand’s addresses. To conservatively track the must-not tainted value sets, we

have to look into different types of memory access of an instruction operand: (1) for constant

memory address, e.g., [0x8000200], we can easily infer that it is a global variable rather

than local variable or heap variable and the must-not tainted value sets of that address can be

updated based on the constant memory address, e.g., if this constant memory address may

be tainted, the constant memory address would be removed from our must-not tainted set;

(2) for a memory access based on ESP register, which we call stack pointer addressing, e.g.,

[esp + 0x4], we identify it as a stack variable, the stack region and offset can be obtained

through our whole program analysis caller/callee stack information; (3) for a memory access

without ESP register, e.g., [eax], this is tricky since we may not know whether it is a stack,

global or heap variable; we thus use the VSA result to decide the value set of the memory

access: if the VSA cannot decide whether the memory access address is tainted or not, we

conservatively remove it from the must-not tainted set.

Resolving operand’s values. Once the algorithm meets an instruction operand that is unini-

tialized (it can lead to an alias cannot be resolved), as mentioned in §3.4.2, we conservatively

taint associated variables, depending on the specific cases:

• Unknown value from CLI (e.g., Figure 3.3a). Based on where the input value is

going to be stored, we assign a corresponding uninitialized value for these variables.

For instance, we will assign an uninitialized value for a stack varaible which belongs
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to the stack of the caller of main and prior to the stack of main function and process

the must-not analysis as usual.

• Unknown value passed from missing callers (Figure 3.3b). A caller function

passes function parameters to a callee function, causing aliasing between actual

parameters and formal parameters. When CFG reconstruction cannot determine the

callers for a callee, it results in unknown value from the missing callers. We conser-

vatively remove all memory access instructions in the function and all uses of these

variables outside the function from must-not tainted set. To optimize our analysis, we

do not over-taint all global variables, instead we taint the data based on their types

(the type inference is described below) in global sections such as .data and .bss.

• Unknown value due to library function calls and system calls (Figure 3.3c). We

taint these unknown variables according to the semantics of library functions and

system calls. For instance, the pointer returned by fopen is put in must-not tainted

set at the program point right after the library call and the pointer returned is assigned

a value set in a special heap region.

Variable type inference. To taint instructions more precisely, we perform a simple variable

type inference to determine whether a variable is a pointer or not. We care them because we

want to identify the potential pointers that can hold the taint buffer. The analysis is based on

whether a variable is dereferenced or whether it is a pointer type parameter or return value of

known library functions as type sinks [63]. For instance, movzbl (%ebx),%eax indicates

the variable stored at ebx is a pointer, and also variable stored at edi in the following snippet

is a pointer as it is passed to the first parameter of strchr library function. With variable

type inference, we could only taint poniter variable of interest when an unknown pointer

is dereferenced instead of tainting all variables.

41



Algorithm 2 Must-not Tainted Analysis
Function MustNotTainted(UntaintedSet, TaintedInst, ValueSet):

input :set of must-not tainted data object UntaintedSet, set of tainted instructions TaintedInst, value
set ValueSet

output :set of tainted data object UntaintedSet, set of tainted instructions TaintedInst
14 Source← TaintSourceScan(Bin)

Init(buffer_start_addr, buffer_length, ValueSet, Source)
if unbounded(ValueSetientry[buffer_startaddr])

∨
unbounded(ValueSetientry[buffer_length]) then

15 exit()
16 while changed do
17 foreach instruction i do
18 if ValueSetientry[opaddr] 6⊆ UntaintedSet then
19 TaintedInst← TaintedInst t {i}

Transfer(UntaintedSet, ValueSet)
Function Transfer(UntaintedSet, ValueSet, i):

input :set of must-not tainted data object UntaintedSet, value set ValueSet
output :set of tainted data object UntaintedSet

20 switch rule(i) do
21 case tag(opaddrdest )← tag(opaddrdest ) | tag(opaddrsrc) do
22 case tag(opaddrdest )← tag(opaddrsrc) do
23 case tag(opaddrunary)← tag(opaddrunary) do
24 UntaintedSet← UntaintedSet − ValueSetientry[opaddrdest ]

if ValueSetientry[opaddrsrc] ⊆ UntaintedSet
∧

evalToConcrete(ValueSetientry[opaddrdest]) then
25 UntaintedSet← UntaintedSet t ValueSetientry[opaddrdest ]
26 if ValueSetientry[opaddr] = (>,>,>) then
27 UntaintedSet← UntaintedSet − ValueSetientry[Overtaint(opaddrdest )]

movl $0xa,0x4(%esp)
mov %edi,(%esp)
call <strchr@plt>

Our Algorithm. Specifically, the must-not tainted analysis algorithm as shown in Algorithm 2

first scans the whole binary for possible taint sources, e.g., read system call and recv sys-

tem call (line 2). Each identified taint source serves as a starting point of our analysis.

The initial tainted buffer has two major characteristics: start address and length. As our

evaluation shows, we are able to identify the value set of the introducing tainted buffer

starting address and length. Otherwise, if either upper bound or lower bound of buffer

start address or buffer length cannot be determined, our analysis triggers a warning and
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terminates, since it may indicate program vulnerability (lines 4-5). The analysis is of a

work-list style and iterates over each instruction until the UntaintedSet and TaintedInst

remain unchanged (reached a fixed point). For each instruction i in the program (line 7),

we first compare the incoming value sets of instruction operand address with our must-not

untainted value sets, if the former is not a subset of the latter, the instruction is identified as

a possible tainted instruction for later taint propagation logic instrumentation (lines 8-9). We

then process UntaintedSet with respect to the taint propagation rule of each instruction

(lines 10-16). Particularly, if the taint propagation rule for instruction i decides i has a data

flow dependence between instruction operand(s), i.e., the taint propagation rule is in the

form of:

tag(opaddrdest) ← tag(opaddrdest) | tag(opaddrsrc)
tag(opaddrdest) ← tag(opaddrsrc)
tag(opaddrunary) ← tag(opaddrunary)

we taint destination operand value set and remove it from UntaintedSet as shown in lines

13-16. If the source operand is deemed untainted and we know the exact concrete address of

destination operand, we enlarge our UntaintedSet by adding destination operand value set

to UntaintedSet as illustrated in lines 17-18. Otherwise, we conservatively taint all of the

possible memory address involved in instruction i.

Example. We use the instruction 0x8048634: mov %al,-0xd(%ebp) listed in Table 3.1

to demonstrate how to use our propagation rules to update the must-not tainted set. Specif-

ically, since the source operand of instruction 0x8048634 is not in UntaintedSet, this

instruction is added to TaintedInst for further taint propagation logic instrumentation and

since the taint propagation rule for this instructions is in the form of:
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tag(opdest)← tag(opdest) | tag(opsrc)

According to algorithm 2, UntaintedSet is updated:

UntaintedSet = UntaintedSet − ValueSetientry[opaddrdest ]
= UntaintedSet − (⊥, -0x440, ⊥)

3.4.3.2 Soundness Analysis of SELECTIVETAINT

Next, we provide a formal analysis of our must-not tainted analysis to prove that it

hardly introduces false negatives, i.e., all instructions in must-not-tainted instruction set Iu

generated by our must-not tainted analysis are indeed not-tainted, except for precision loss

due to imprecise CFG and VSA.

Figure 3.4 shows the formal representation of must-not tainted analysis. Basically,

for removing or adding an instruction in Iu, one has to apply one of the four primary

inference rules, i.e., rule UNREACHABLE, UNKNOWNOPERAND, UNTAINTEDOPERAND,

or NONPROPAGATEOPCODE:

• In UNREACHABLE rule, if there is no path from taint sources to instruction i, then

instruction i is removed from must-not-tainted instruction set Iu;

• In UNKNOWNOPERAND rule, if there exists an operand with unknown value set, then

instruction i is removed from must-not-tainted instruction set Iu;

• In UNTAINTEDOPERAND rule, if for each operand o of instruction i, its value set is a

subset of must-not-tainted value set Vu, then instruction i is added to must-not-tainted

instruction set Iu;
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Primary Inference Rules

Instructions:

UNREACHABLE
@is ∈ source, is ; i

Iu −= {i} UNKNOWNOPERAND
∃o ∈ op(i), V [o] = (⊥,⊥,⊥)

Iu −= {i}

UNTAINTEDOPERAND
∀o ∈ op(i), V [o] ⊆ Vu

Iu ∪= {i} NONPROPAGATEOPCODE
∀o ∈ op(i), V [o]

i≡ V [o]
Iu ∪= {i}

Auxiliary Inference Rules

Control-flows:

REACHABLE
succ(i1, i2)

i1 ; i2
TRANSREACHABLE

succ(i1, i2) succ(i2, i3)
i1 ; i3

Operands:

LITERALOPERAND
l ∈ op(i) l : literal

Vu ∪= V [l] LABELOPERAND
l ∈ op(i) l : label

Vu ∪= V [l]

TAINTSOURCE
o ∈ taintedop(is) is ∈ source

Vu −= V [o]

TAINTPROPAGATE
o1 ∈ sourceop(i) o2 ∈ destop(i) V [o1] ⊆ Vu

Vu −= V [o2]Opcodes:

PCREGCHANGEOPCODE
V [pc]

i
6= V [pc] ∀o ∈ op(i), V [o] i

= V [o]
Iu ∪= {i}

STATUSREGCHANGEOPCODE
V [status]

i
6= V [status] ∀o ∈ op(i), V [o] i

= V [o]
Iu ∪= {i}Notations:

Vu: Must-not-tainted value set Iu: Must-not-tainted instructions
i
=: Equal values after executing i V: VSA result map

Figure 3.4: Formal representation of must-not tainted analysis

• In NONPROPAGATEOPCODE rule, if for each operand o of instruction i, there is no

side effect on operand o after executing instruction i, then instruction i is added to

must-not-tainted instruction set Iu.
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The rest inference rules of Figure 3.4 are auxiliary inference rules. Rule REACHABLE

indicates, if instruction i2 is a successor of instruction i1, then i2 is reachable from i1. Simi-

larly, TRANSREACHABLE rule indicates, if instruction i3 is a successor of instruction i2 and

instruction i2 is a successor of instruction i1, i3 is reachable from i1. LITERALOPERAND

rule indicates, if the operand value set has a type of literal, it is added to must-not-tainted

value set Vu and LABELOPERAND rule indicates, if the operand’s value set has a type of

label, it is added to must-not-tainted value set Vu. TAINTSOURCE and TAINTPROPAGATE

rules infer that the tainted value set is removed from must-not-tainted value set Vu and when

taint propagates from source operand to destination operand of an instruction, the destination

operand is also tainted. PCREGCHANGEOPCODE and STATUSREGCHANGEOPCODE rules

indicate that, if after executing instruction i, instruction operands value sets are not changed

and only the value sets of program counter or status registers are changed, then instruction

i is added to must-not-tainted instruction set Iu.

Theorem 1. Must-not-tainted analysis is sound, w.r.t, precise CFG and VSA results.

Proof. We prove this theorem with induction.

(1) In the first iteration of the analysis, the must-not-tainted set Iu is /0. Must-not-tainted

analysis is sound since every instruction is tainted.

(2) We next prove that if in the k-th iteration, the must-not-tainted analysis is sound, w.r.t,

precise CFG and VSA results, it also holds in k+1-th iteration.

Suppose the must-not-tainted set Iu in the k-th and k+1-th iteration are I k
u and I k+1

u .

Given any instruction i, whether instruction i is added to or removed from must-not-tainted

instruction set I k
u has four cases:
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(2.1) Instruction i cannot be reached from taint sources. The UNREACHABLE rule will

remove i from I k
u . In this case, instruction i can be potentially tainted, and therefore safely

removing i from I k
u will result in a sound I k+1

u .

CFG imprecision. As reconstructing CFG is a hard problem in practice, case 2.1 is sound

except for the imprecise CFG. As shown in §3.4.1, SELECTIVETAINT matches callers

and callees based on forward-edge CFI identification approaches and matches jumps and

jump targets with basic block starting addresses within the same function or function entry

addresses. These methods may introduce false negatives and produce imprecise CFG for

real-world binaries.

(2.2) One or more operands of instruction i have an unknown value set. The UNKNOWN-

OPERAND rule will remove i from I k
u . In this case, instruction i can propagate taints, and

therefore safely removing i from I k
u will result in a sound I k+1

u .

VSA imprecision. Though VSA may introduce imprecision, this rule conservatively removes

all instructions with unknown value sets from I k
u .

(2.3) All operands of instruction i are subsets of must-not-tainted value set V k
u . V k

u is up-

dated based on rules in Operands rule group in Figure 3.4. Per rule LITERALOPERAND and

LABELOPERAND, if an operand is of type literal or label, its value cannot propagate

taint and it is added to V k
u . Per rule TAINTSOURCE and TAINTPROP, at taint source and

taint propagation instructions, V k
u gets updated by removing the tainted value set. If all

operands of instruction i are subsets of must-not-tainted value set V k
u , it means all values in

the operands are must-not-tainted and certainly should be added to I k
u and I k+1

u is sound.

VSA imprecision. As VSA is a undecidable problem, it may introduce imprecision when

VSA fails to identify whether an operand is actually a subset of V k
u and when V k

u is updated.
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Algorithm 3 SELECTIVETAINT Algorithm
Function SelectiveTaint(Bin):

input :original bianry Bin
output : instrumented binary NewBin

1 Init (UntaintedSet, TaintedInsn, ValueSet)

2 while changed do
3 CFG← CfgReconstructtion(Bin, CFG, ValueSet)

ValueSet← whole_program_VSA(CFG, ValueSet)
UntaintedSet, TaintedInsn←MustNotTainted(UntaintedSet, TaintedInst, ValueSet)

4 NewBin← Rewriting (Bin, TaintedInst)

(2.4) Instruction opcode has no impact on taint propagation. In this case, instruction i

should be added to Iu, as the instruction does not involve in any explicit handling of tainted

data. Particularly, an instruction may only have side effects on program counter or status

register but not its operands, and in these cases no taint is involved and instruction i should

be added to I k
u , as in rules PCREGCHANGEOPCODE and STATUSREGCHANGEOPCODE,

which results in a sound I k+1
u .

Therefore, must-not-tainted analysis of SELECTIVETAINT is sound, except for the im-

precision introduced by current limitations of undecidable CFG reconstruction and VSA

results in binary.

3.4.4 Binary Rewriting

Based on the identified tainted instructions, we instrument taint propagation logic via

binary rewriting for each instruction just as how a conventional DFT performs. The only

difference is conventional DFTs instrument at run-time through dynamic binary instrumen-

tation and yet we instrument the binary statically to track how taints are introduced at the

taint sources, propagated, and checked at taint sinks.
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With the support from our CFG reconstruction, value set analysis, and taint instruction

identification, we then sequentially combine these three analyses in a loop body and the

set of ValueSet, UntaintedSet and TaintInst get gradually changed until a fixed point

is reached. In particular, as illustrated in algorithm 3, at line 2, we first initialize the three

sets of ValueSet, UntaintedSet and TaintInst with the taint source information. Lines

3-6 will reach a fixed point after iterations of sequentially applying CFG reconstruction,

value set analysis and taint instruction selection algorithm. When all the taint sources are

processed, at line 7, our binary rewriter rewrites the original binary with taint propagation

logic on selected instructions.

Note that for performance reasons, we use a function summary approach to process

standard libraries such as libc, which is inspired by how RAMBLR [112] handled library.

That is, we will not statically rewrite the instructions in the library, and instead we rewrite the

callers to perform direct taint tracking e.g., introduced taint, and propagate taint according

to the corresponding parameters. For instance, when we notice memcpy call, we will directly

taint the destination memory based on the data in the source memory.

3.5 Implementation

We have implemented SELECTIVETAINT atop angr [101] and Dyninst [6]. Specifically,

(1) we used angr to build a CFG for the binary, then implemented our own forward-edge

CFI identification based on TypeArmor [111] and τCFI [77], i.e., using our own VSA

to determine unsolved call sites targets, connecting unsolved call sites to functions with

same parameter count and parameter type, and connecting unsolved indirect jumps with

basic block starting address or all function entry addresses; (2) we implemented our own

flow-sensitive and context-sensitive whole program VSA, which is used to determine the
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value set held at each program point; (3) based on the generated CFG and VSA results, we

implemented taint instruction identification using the rules described in Figure 3.4 to identify

the untainted instructions; (4) and after that we use Dyninst to statically rewrite the binary,

which is widely used in recent studies [79, 84, 103, 110, 111]. The total implementation of

SELECTIVETAINT consists of 7,000 python code, and 22,000 C/C++ code. The source

code of SELECTIVETAINT will be made publicly available.

CFG Construction. To implement the analyzer, first, we recover the control flow graph

(CFG) of the binary using angr in which step we find every basic block address, its con-

taining instructions and the predecessors and successors of each basic block. Afterwards,

remaining unsolved indirect control flow transfers are further resolved using our method

describe in §3.4.1.

Value Set Analysis. We initialize sets ValueSet with the data extracted from original

binary, e.g., section and segment information, initial data values in .rodata and .data

section. When identifying memory region for variables, (1) for stack variable, we track the

value set of stack pointer SP in different calling context, examine and figure out whether a

variable is a stack variable and in which function the variable is defined, i.e., in whose stack

frame the variable resides; (2) for global variable, we track the value set of variables and

check if it could be evaluated to an address in code segment or data segment as a global

variable; (3) for heap variable, we track the call instructions for malloc, alloc C library

calls and etc. to determine whether it is a heap variable.

In intra-procedural analysis, the value set for each abstract location is calculated in a

worklist algorithm until a fixed point is reached. In inter-procedural analysis, a function

summary is generated based on intra-procedural analysis results to summarize the value
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set changes of each function. The static analysis finishes when all value sets in the whole

program remain unchanged.

Taint Instruction Selection. We examine maintain a must-not tainted abstract location set

for each program point based on the value sets generated by value set analysis and the type

of each instruction generated by Capstone disassembler. When must-not tainted abstract

location sets reach a fixed-point, each instruction is examined as tainted or untainted based

rules in Figure 3.4, i.e., we conservatively assume an abstract location is tainted whenever

we cannot determine its taintedness. Unlike libdft which is implemented using Pin, we do

not go into the dynamic library functions, and instead, we use a function summary for each

library functions to track taint propagation.

Binary Rewriting. Our rewriter is implemented with a bit tag size and a byte tag gran-

ularity using Dyninst [6] binary instrumentation and analysis framework. Dyninst is an

anywhere, anytime binary instrumentation framework which could be used in both static

binary rewriting at compile-time or dynamic instrumentation at run-time. We favor Dyninst

as it is a the-state-of-the-art tool in binary rewriting which is used in a variety of tools and

its robust API implementation.

3.6 Evaluation

In this section, we present the evaluation results. To see the improvements over dynamic

taint analysis, we compare SELECTIVETAINT with libdft [54]. The version of Intel Pin

used to build libdft was 2.14 (build 71313), and we slightly modified the nullpin and

libdft tool and adopted them in our experiment settings. Also, to see the advancements

of the selective taint analysis, we also implemented a static taint analysis by instrument-

ing all instructions, and we call this system STATICTAINTALL. We use the SPEC 2006
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Benchmark Input Functions # Func. # Inst. # SELECTIVETAINT
Instrum. Inst. (%)

# libdft Executed
Tainted Inst. (%)

Analysis
Time (s)

SPEC benchmarks
400.perlbench read, fread, fgetc 1,855 229,895 100,373 (43.66%) 3457 (1.51%) 7,085
401.bzip2 read 102 12,492 4,904 (39.26%) 61 (0.49%) 27
403.gcc read, fread, _IO_getc 4,725 653,275 286,783 (43.90%) 1426 (0.22%) 65,054
429.mcf fgets 52 2,631 146 (5.55%) 486 (18.49%) 2
445.gobmk _IO_getc, fgets 2,591 172,105 77,284 (44.91%) 2633 (1.53%) 4,315
456.hmmer fread, fgets 572 62,098 23,543 (37.91%) 2400 (3.89%) 520
458.sjeng _IO_getc, fgets 183 24,052 8,374 (34.82%) 65 (0.27%) 196
462.libquantum fread, fgetc 137 9,760 3,615 (37.04%) 759 (7.78%) 17
464.h264ref read, fread, __isoc99_fscanf 578 107,486 49,143 (45.72%) 894 (0.83%) 1,511
471.omnetpp _IO_getc, fgets 2,140 123,635 52,429 (42.41%) 1303 (1.06%) 6,199
473.astar read, fscanf 121 9,013 2,125 (23.58%) 780 (8.66%) 15
483.xalancbmk fread, std::istream::read 13,645 704,360 312,113 (44.31%) 1278 (0.18%) 80,962

Web applications
nginx server read, pread64, readv, recv 1,276 134,210 55,200 (41.13%) 1,594 (1.19%) 2,468
lynx browser read, fread, fgetc, fgets, _IO_getc, wgetch, readlink 1,671 217,474 82,726 (38.04%) 2,185 (1.00%) 6,609

Other applications
SoX 14.4.2 read,fread,fgets,_IO_getc,__isoc99_scanf,__isoc99_fscanf 1,158 113,112 33,529 (29.64%) 1,554 (1.37%) 1,644
TinTin++ 2.01.6 read,fread,fgets,_IO_getc,gnutls_record_recv,fgetc 830 94,161 47,631 (50.58%) 1,268 (1.35%) 1,074
Mini-XML 2.12 read,_IO_getc,__fread_chk 274 20,463 238 (1.16%) 553 (2.70%) 100
dcraw 9.28 fread,fscanf,__fread_chk,_IO_getc,fgets,jpeg_read_header 291 70,882 24,646 (34.77%) 581 (0.82%) 701
ngiflib 0.4 fread,_IO_getc 42 2,149 314 (14.61%) 441 (20.52%) 2
Gravity 0.3.5 read,getline 1,123 87,120 34,307 (39.38%) 1,224 (1.40%) 1,203
ncurses 6.0 read,fread,fgets,fgetc 821 61,825 24,544 (39.70%) 755 (1.22%) 572
LAME 3.99.5 fread,_IO_getc,__fread_chk 553 71,656 20,186 (28.17%) 1,101 (1.54%) 613
MP3Gain 1.5.2 fread,_IO_getc 143 17,609 4,326 (24.57%) 1,286 (7.30%) 44
LibTIFF 4.0.7 read,jpeg_read_header,jpeg_read_raw_data 620 55,674 20,888 (37.52%) 616 (1.11%) 396
NASM 2.14.02 fread,fgets,fgetc 531 81,458 34,203 (41.99%) 765 (0.94%) 908
libjpeg-turbo 2.0.1 fread,_IO_getc,__fread_chk 2,186 118,082 27,640 (23.41%) 503 (0.43%) 981
OpenJPEG 2.3.0 fread,_IO_getc,fgets,fgetc,__isoc99_fscanf,png_read_image 158 18,006 4,322 (24.00%) 772 (4.29%) 51
Jhead 3.00 fread,fgetc 109 9,969 3,412 (34.23%) 471 (4.72%) 19

Table 3.2: Instructions instrumented by SELECTIVETAINT and libdft.

CPUINT benchmarks, network daemon Nginx-1.4.0, web browser Lynx, and 14 recent

program vulnerabilities to evaluate SELECTIVETAINT. We first evaluate its effectiveness

by looking into the details of how SELECTIVETAINT performs in §4.4.1, and then report

the performance overhead of the rewritten binaries in §4.4.3. Finally, we demonstrated its

security applications with real world binaries in §3.6.3.

3.6.1 Effectiveness

We report the effectiveness of how SELECTIVETAINT performs with the SPEC2006

CPUINT benchmarks in Table 3.2. The first column shows the 28 C/C++ programs in the

benchmark we used in our evaluation, followed by the 2nd column of the input functions

detected by SELECTIVETAINT. Note that the input function is the function that introduces
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the taint sources. Next, we report the total number of functions contained in the benchmark

program in the 3rd column, which provides an estimation of the complexity of the program.

Then, we show the total number of instructions identified in the binary in the 4th column.

Our STATICTAINTALL statically rewrites all of these instructions, similarly to how dynamic

taint analysis instruments them. This will provide an upper bound of how SELECTIVETAINT

would perform in the worst case (by statically taint them all). Next, we show the total

number of instructions that need to be statically instrumented by SELECTIVETAINT in

the 5th column followed by the total number of executed unique instructions that really

involved in taint analysis in the 6th column, and this number is obtained by running the

corresponding benchmark by using the default configured input with libdft, which will

provide a lower bound of the number of unique tainted instructions. For fair comparison, we

did not count the instructions in the library from the libdft trace since SELECTIVETAINT

will not instrument them. Finally, we report how long SELECTIVETAINT performs to

process each of the benchmarks in the last column.

We can observe from Table 3.2 that our VSA analysis on the must-not tainted instruction

analysis works well in these benchmarks, and we have largely reduced the possible tainted

instructions to only about 1.66% - 50.58% compared to STATICTAINTALL. While ideally

we would like to instrument only the instruction involved in the taint analysis (which is

a subset of the instructions identified by SELECTIVETAINT), as detected by the libdft

which shows about 0.18% - 20.52% of these instructions are essentially needed in the taint

analysis at run-time, we will not be able to achieve this by purely static analysis.

False Positives and False Negatives. We define false negatives to be the instructions SE-

LECTIVETAINT assumes to not be tainted but libdft indicates it should and false positives

to be the instructions SELECTIVETAINT assumes to be tainted but libdft indicates it should
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not. By examining the instructions tainted by SELECTIVETAINT and libdft, we observe

SELECTIVETAINT reports no false negatives but false positives. False positives indicates

SELECTIVETAINT is conservative and over-tainting instructions and false positives are

acceptable, while no false negatives indicates our approach is a sound over-approximation

of the tainted instructions. We contribute this to the conservative rules in Figure 3.4, for

instance, we remove the value set from untainted value set as long as we cannot determine

the taintedness of that value set.

Internal Statistics. We also measured the statistics of SELECTIVETAINT in Table 3.3 to

understand its inner-workings. Columns 2-3 are CFG reconstruction details, i.e., the number

of initial CFG edges and the number of final CFG edges after our CFG reconstruction.

We can observe our CFG reconstruction can add hundreds of edges to the CFG using the

techniques described in §3.4.1. Columns 4-8 are value set analysis statistics, which are the

number of abstract locations in the analysis, the unknown abstract locations due to command

line parameters, argument aliasing when missing callers, and library function calls. We can

observe our approach identifies thousands of abstract location and multiple unknown abstract

locations in each category. Columns 9-12 are numbers in taint instruction identification,

such as the number of initially untainted value sets in the first iteration, the number of final

untainted value sets, the intra-procedural iteration times, and the inter-procedural iteration

times. We can observe that the number of untainted value sets get smaller through analysis

iterations, which means our analysis does propagate untaintedness and remove potentially

tainted value sets from the must-not-tainted set Vu. The intra-procedural analysis generally

has hundreds of iterations while the inter-procedural analysis has fewer (tens of) iterations,

from which we can observe the intra-procedural analysis reaches the fixed point with more

iterations than inter-procedural analysis.
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CFG Reconstruction Value Set Analysis Taint Instruction Identification
Benchmark Init. Updated A-Loc Uninit. Uninit. Uninit. Uninit. 1st-pass Last-pass #Intra. #Inter.

Edges Edges CLI Arg. Alias Lib Total Untaint-V Untaint-V Iter. Iter.
SPEC benchmarks

400.perlbench 134528 192247 54779 2 2077 1125 3204 34353 17191 9941 4
401.bzip2 4686 5280 1809 3 62 125 190 1469 1079 731 6
403.gcc 446969 757822 167792 2 2957 3221 6180 91355 41822 9450 2
429.mcf 1046 1113 658 2 17 48 67 602 602 110 2
445.gobmk 73068 94056 55641 7 6347 800 7154 45675 20839 19673 6
456.hmmer 28040 32339 14637 4 864 1608 2476 8260 6431 3658 5
458.sjeng 12250 12732 4710 5 67 416 488 4031 1994 1141 5
462.libquantum 3481 3638 2357 4 158 115 277 2237 1162 981 6
464.h264ref 33980 64541 16970 3 116 629 748 9667 7062 3888 5
471.omnetpp 76573 560618 51777 2 1532 5144 6678 21562 12754 14066 5
473.astar 3156 3374 2266 5 94 187 286 1913 1566 853 6
483.xalancbmk 356198 6616514 335098 2 2260 41491 43753 130351 104012 27290 2

Web applications
nginx server 59593 233072 31304 2 806 1061 1869 19105 13884 8364 5
lynx browser 140063 438081 59413 5 287 6269 6561 20448 11092 9440 4

Other applications
SoX 14.4.2 47050 68338 25654 6 1474 1828 3308 16512 13074 9544 7
TinTin++ 2.01.6 34351 34407 17712 3 465 2203 2491 8674 1135 4600 4
Mini-XML 2.12 11401 18911 3684 4 7 597 608 3616 3542 706 3
dcraw 9.28 24830 26423 9414 2 111 1506 1619 4496 4197 1516 4
ngiflib 0.4 1022 1038 453 4 17 94 115 276 276 97 2
Gravity 0.3.5 36380 53161 22184 5 1415 537 1957 10805 6276 4645 4
ncurses 6.0 32129 58793 15613 6 141 630 777 10759 6667 5996 6
LAME 3.99.5 26449 31662 11060 3 333 677 1013 8087 5837 3374 5
MP3Gain 1.5.2 6293 6522 2948 4 19 514 537 1841 1595 838 5
LibTIFF 4.0.7 23939 78337 12471 4 549 496 1049 6707 5237 3241 4
NASM 2.14.02 43112 97209 17354 5 154 935 1094 8607 3833 2848 4
libjpeg-turbo 2.0.1 34083 280515 15908 5 1319 613 1937 14455 9893 5007 5
OpenJPEG 2.3.0 7461 7719 3178 5 214 964 1183 1496 1271 686 4
Jhead 3.00 5292 5571 2383 3 17 467 487 1613 873 529 4

Table 3.3: SELECTIVETAINT Internal statistics.

Performance. With respect to the performance (e.g., the analysis time) of SELECTIVE-

TAINT itself, we notice it is a very time consuming process, especially with large software.

This is understandable, since SELECTIVETAINT will inspect each instruction and calcaulate

VSA for each of them. Meanwhile, the analysis has to be run twice: first calculating the

VSA, and then determining the taintedness. We notice it took more than 5 hours to process

the 403.gcc benchmark, whereas for small binaries, e.g., 462.libquantum, it could take

just a few minutes.
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Figure 3.5: Performance Overhead Evaluation of the Tested Benchmarks.

3.6.2 Efficiency

Next, we measure the performance overhead of the rewritten binaries. To compare

with libdft, we run the binaries with the default configured input, with nullpin (a simple

implementation to evaluate Intel Pin platform overhead), libdft with a bit level taint. We

run the corresponding benchmark with and without rewriting to understand the additional
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overhead. All of the experimental results were obtained with 10 runs and then normalized

by dividing each average result against native unmodified executables.

SPEC2006 CPUINT benchmarks. Figure 3.5a shows the normalized runtime overhead

of nullpin, libdft, STATICTAINTALL, SELECTIVETAINT and SELECTIVETAINT-TYPED,

when running with the SPEC2006 CPUINT benchmark suite, compared with the native exe-

cution. We can notice that libdft imposes slowdown of ranging from 5.26x (mcf) to 16.37x

(h264ref), whereas STATICTAINTALL and SELECTIVETAINT impose 3.27x (gobmk) to

11.53x (h264ref) and 1.54x (sjeng) to 2.70x (perlbench), respectively. STATICTAIN-

TALL outperforms libdft in all 12 benchmarks with 1.29x - 2.25x faster and similarly

SELECTIVETAINT performs even 2.88x - 7.98x faster than that of libdft.

Nginx web server. One ideal use case for SELECTIVETAINT would be for the protection of

network daemons. We thus use Nginx as a benchmark to thoroughly evaluate its overhead.

In particular, we tested nullpin, libdft, STATICTAINTALL, and SELECTIVETAINT on Nginx

web server 1.4.0 with default settings. When requesting different file sizes with 1KB, 10KB,

100KB, and 1MB, respectively, using Apache Benchmark ab, the result is illustrated in

Figure 3.5b. All four tools including libdft performs no more than 2x slowdown. The

biggest slowdown for libdft is 1.56x (100KB). STATICTAINTALL imposes 1.16x-1.37x

slowdown and outperforms libdft by 1.15x-1.24x. SELECTIVETAINT performs even better

with 1.14x-1.15x which outperforms libdft by 1.17x-1.39x.

We tested the concurrent performance of nullpin, libdft,STATICTAINTALL, and SELEC-

TIVETAINT with 2, 4, 8, 16, 32 and 64 concurrent connections. The result is shown in

Figure 3.5c. The nullpin performs 1.16x-1.14x slowdown. While libdft imposes 1.34x-1.55x

slowdown, STATICTAINTALL imposes a less slowdown of 1.2x-1.36x. SELECTIVETAINT

outperforms nullpin, libdft and STATICTAINTALL by a slowdown of 1.10x-1.17x.
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We also tested the throughput of Nginx downloading files over HTTP connections as

shown in Figure 3.5d. The worst average throughput performance is libdft which is 13.8%

smaller requests rate (862.3 req/s). SELECTIVETAINT has 1.5% smaller requests rate (985.4

req/s). The nullpin and STATICTAINTALL have 2.7% (973.4 req/s) and 10.4% (896.4 req/s)

smaller requests rate, respectively.

Lynx web browser. To test the performance of SELECTIVETAINT on client side applica-

tions, we also tested Lynx web browser. Specifically, we tested nullpin, libdft, STATIC-

TAINTALL, and SELECTIVETAINT on Lynx web browser 2.8.8 with default settings. When

requesting different file sizes with 1KB, 10KB, 100KB, and 1MB, respectively, the result is

illustrated in Figure 3.5e. libdft performs biggest slowdown of 4.13x-7.10x, while nullpin

and STATICTAINTALL impose 1.25x-2.14x and 1.21x-2.24x slowdown, which outperform

libdft by 2.88x-3.33x and 2.96x-3.41x, respectively. SELECTIVETAINT has an even better

slowdown of 1.03x-1.25x which outperforms libdft by 4x-5.9x.

We tested the concurrent performance of nullpin, libdft, STATICTAINTALL, and SE-

LECTIVETAINT with 2, 4, 8, 16, 32 and 64 concurrent Lynx web browser instances. The

result is shown in Figure 3.5f. The nullpin performs 2.21x-2.51x slowdown. While libdft

imposes 6.71x-7.48x slowdown, STATICTAINTALL imposes a less slowdown of 1.94x-2.23x.

SELECTIVETAINT outperforms nullpin, libdft and STATICTAINTALL by a slowdown of

1.13x-1.23x.

3.6.3 Security Case Studies

Protecting Nginx web server. To show that our tools could be used to detect real-world

attacks, we first implemented a buffer overflow attack detector and used it to protect Nginx

web server. To test its effectiveness, we generated an exploit based on the buffer overflow
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Program Vulnerability CVE ID
SoX 14.4.2 Buffer Overflow CVE-2019-8356
TinTin++ 2.01.6 Buffer Overflow CVE-2019-7629
Mini-XML 2.12 Buffer Overflow CVE-2018-20593
dcraw 9.28 Buffer Overflow CVE-2018-19655
ngiflib 0.4 Buffer Overflow CVE-2018-11575
Gravity 0.3.5 Buffer Overflow CVE-2017-1000437
ncurses 6.0 Buffer Overflow CVE-2017-16879
LAME 3.99.5 Buffer Overflow CVE-2017-15046
MP3Gain 1.5.2 Buffer Overflow CVE-2017-14411
LibTIFF 4.0.7 Buffer Overflow CVE-2016-10095
NASM 2.14.02 Use-After-Free CVE-2019-8343
libjpeg-turbo 2.0.1 Integer Overflow CVE-2018-20330
OpenJPEG 2.3.0 Integer Overflow CVE-2018-5785
Jhead 3.00 Integer Underflow CVE-2018-6612

Table 3.4: Tested vulnerable software and their vulnerabilities.

vulnerability CVE-2013-2028. By leveraging this vulnerability, an attacker could send a

malformed request that triggers an integer signedness error which further causes a stack-

based buffer overflow. This bug can be used in a denial-of-service attack or cause arbitrary

code execution. Without any surprise, our SELECTIVETAINT detects the exploit at the ret

instruction because the return value stored on the stack is tainted and thus triggers a warning.

Protecting other binaries against recent memory exploits. We further tested 14 recent

real world software vulnerabilities from Common Vulnerabilities and Exposures (CVE)1,

which are listed in Table 3.4. The collected vulnerabilities covered a broad range of

software vulnerabilities, including buffer overflow vulnerability, use-after-free vulnerability,

integer overflow vulnerability and integer underflow vulnerability, which manifested in

varied programs such as sound processing utilities SoX, programming language interpreter

Gravity, and text-based user interfaces ncurses.

1https://cve.mitre.org/
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We implemented the corresponding exploits to compromise these vulnerabilities and

validate whether SELECTIVETAINT is able to detect the attacks. For instance, to exploit

CVE-2018-20593 vulnerability in Mini-XML 2.12, we developed a malformed xml file,

which overflowed program stack to rewrite the return address with payloads in xml file. To

exploit CVE-2019-7629 vulnerability in TinTin++ 2.10.6, we set up a simple game server

with exploits that keep sending crafted message which overflowed the multiplayer online

game client TinTin++. Then test binaries were instrumented with SELECTIVETAINT. In all

cases, SELECTIVETAINT successfully detects the exploits which shows SELECTIVETAINT

can facilitate real world taint analysis in various applications.

3.7 Summary

We have presented an efficient static analysis based data flow tracking framework

SELECTIVETAINT. Unlike previous taint analysis that uses dynamic binary instrumentation,

SELECTIVETAINT is built atop static binary rewriting. The key enabling technique is the use

of VSA to identify the instructions that never involve taint analysis, and then rewrite the rest

to implement the taint analysis. We have tested SELECTIVETAINT with 28 binary programs

including SPEC2006 CPUINT benchmarks and observed a substantial performance gain,

which is 5X faster than state of the art dynamic taint analysis.
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Chapter 4: Exploring Value Set Analysis for Data Race Detection in

Intel SGX Enclave Binary

4.1 Changllenges and Insights

In order to detect a data race between threads, intuitively we have to first identify the

shared variables, then exclude the ones that are lock protected, and finally interleave the

threads to detect whether there is the access that can cause a data race. Therefore, at a

high level there will be three challenges when identifying controlled data races in enclave

binaries. In the following, we use a working example presented in Figure 4.1, which is a

very simple SGX program with two ecalls, to clearly illustrate these three challenges.

Identifying shared variables in enclave binaries. Unlike variables in program source

code which are declared and very obvious to be identified (e.g., variable global_mutex_0

used at line 2 in Figure 4.1), the variables in the binaries are hard to be identified, since the

symbols are all gone and variables have all been translated into just registers and memory

addresses. We have to rely on the access of memory addresses and registers to abstract

the variables, based on each instruction semantics. However, this has been proved to be a

challenging task. Also, to detect a data race, we have to know the specific accesses (e.g.,

R-Read, or W -Write) to the variables, since only R/W or W /W accesses will cause races.
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1 void ecall_0(void) {
2 sgx_thread_mutex_lock (& global_mutex_0 );
3 global_counter = 0;
4 ...
5 if(global_counter == 0) foo ();
6 sgx_thread_mutex_unlock (& global_mutex_0 );
7 }
8 void ecall_1(void) {
9 sgx_thread_mutex_lock (& global_mutex_1 );

10 global_counter = 1;
11 sgx_thread_mutex_unlock (& global_mutex_1 );
12 }

Figure 4.1: Working example.

To identify variables in the binaries is not a new problem. One promising technique to

identify them statically in binary is through value set analysis (VSA) [3]. Recently, there

have been significant development with VSA in binary analysis (e.g., [37, 112, 124]), and

certainly we can leverage these advances to identify shared variables when developing

SGX-RACER. To further differentiate the specific access of the variables, we can rely on the

instruction semantics, such as “inc %rax” implying both a read and write access of rax,

“mov $1, %rax”, and “pop %rax” implying write accesses of rax, and “cmp $0, %rax”

implying a read access of rax.

Identifying lock variables in the enclave binaries. After identifying the shared variables,

we must further identify whether they are protected by any synchronization primitives, and

then exclude them from our analysis. However, there are many synchronization primitives,

such as thread once, barriers, spin locks, mutex locks, reentrant mutex locks, read-write

locks, and condition variables. These primitives are typically provided by SGX SDKs.

Additionally, there are also programmer defined synchronization primitives such as locks

built from LOCK prefix (e.g., an instruction sequence “mov $0x1,%ecx”, “lock cmpxchg
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%ecx,(%rdx)” which moves a constant value 1 to the lock variable indexed by register

rdx and then locks it), and also the special xchg instruction which asserts the lock signal

regardless of LOCK prefix.

For standard synchronization primitives, fortunately SGX SDK provides the correspond-

ing APIs. For instance, as shown in our working example Figure 4.1, there are APIs such

as sgx_thread_mutex_lock, and sgx_thread_mutex_un lock. We can easily identify

them based on the provided APIs. To identify self-defined synchronization primitives,

we can first identify the instructions with LOCK prefix, and perform data flow analysis to

identify the lock variables associated with the lock instructions and the specific lock/unlock

values written to them (e.g., 0 to unlock, and 1 to lock). After identifying the involved

synchronization primitives, we can then use a lockset-based algorithm [51] to exclude the

shared variable accesses that cannot be raced.

Statically detecting data races due to unintended thread interleavings. As ecalls can

be invoked in an arbitrarily order by a malicious OS, all ecalls become concurrent, which

introduces many more possible thread interleavings than a traditional data race detector

needs to consider. Intuitively, for an SGX program with n ecalls (n > 1), there are C2
n + C1

n =

n(n+1)
2

2 possible concurrent ecall combinations, some of which are not originally intended to

be concurrent and now become unintended interleavings. For instance, Figure 4.1 is a simple

enclave program which has two ecalls: ecall_0 and ecall_1. Therefore there are three

concurrent ecall combinations: concurrent ecall_0 and ecall_0, concurrent ecall_0 and

ecall_1, and concurrent ecall_1 and ecall_1. In the original program, ecall_0 and

ecall_1 are never assumed to be concurrent and should only yield the intended interleaving

2Note that C2
n denotes the total number combinations of any two independent ecalls (e.g., <ecall_0,

ecall_1>), and we have to add additional C1
n ecall pairs which are those the same ecalls (e.g., <ecall_0,

ecall_0>), to get the total number of all combinations.
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LOCK(MUTEX0);
global_counter = 0;
...
if(global_counter == 0) foo();
UNLOCK(MUTEX0);

LOCK(MUTEX1);
global_counter = 1;
UNLOCK(MUTEX1);

(a) No data race in the intended single-threaded program (ecall_0 first and then
ecall_1)

LOCK(MUTEX0);

global_counter = 0;

...
if(global_counter == 0) foo();
UNLOCK(MUTEX0);

LOCK(MUTEX1);   

global_counter = 1;
UNLOCK(MUTEX1);

T0 T1
LOCK(MUTEX0);
global_counter = 0;
...

if(global_counter == 0) foo();

UNLOCK(MUTEX0);

LOCK(MUTEX1); 

global_counter = 1;
UNLOCK(MUTEX1);

T0 T1

Interleaving 1

Interleaving 0

(b) Data races in the unintended multi-threaded program (T0 invokes ecall_0
and T1 invokes ecall_1)

Figure 4.2: Thread interleavings in working example.

in Figure 4.2a where no data races occur on shared variable global_counter. However,

in controlled data race attacks, the attacker can concurrently invoke ecall_0 and ecall_1

at very fine-grained granularity, and can result in the unintended interleavings in Figure 4.2b

which have data races on shared variable global_counter.

While we can use a brute force approach to consider all possible ecall combinations and

interleavings, one optimization we can have is to only consider ecalls that access at least
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Shared Variable Analysis 
(§4.1)

Lockset Analysis
(§4.2)

Data Races

Synchronized 
Shared Variables

Shared Variables

Figure 4.3: Overview of SGX-RACER.

one common shared variable and at least one access is a write to filter out concurrent ecalls

that will never introduce data races from all possible combinations. That is, we can focus

on the combinations of the shared variable access and explore their possible combinations,

instead of intuitively using ecall combinations. This helps us efficiently prune concurrent

ecall combinations that will never cause data races.

4.2 System Overview

An overview of SGX-RACER is illustrated in Figure 4.3. To detect a data race in enclave

binaries, it consists of two phases of analysis: (i) shared variable analysis to identify the set

of all of the shared variables and their accesses, and (ii) lockset analysis to identify the set

of all of the synchronization protected shared variables and their accesses. The intersection

of these two sets will be the final detected data races.

Shared variable analysis. To identify data races, SGX-RACER first needs to detect the

shared variables that can potentially be accessed in data races. Shared variables in a program

typically belong to either global variables or heap variables, and they are identified by

analyzing memory accesses in the binary via data flow analysis and the corresponding
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Variable Name Line# R/W
global_counter 3 W
global_counter 5 R
global_counter 10 W
global_mutex_0 2 R
global_mutex_0 6 R
global_mutex_1 9 R
global_mutex_1 11 R

Table 4.1: Shared variable accesses in working example.

instruction semantics are also used to determine whether it is a read access, or write access,

or both. Since fundamentally a data race occurs at the shared variable accesses, not the

variable itself, we have to identify their accesses. To this end, we use a set to capture the

shared variable accesses, and each element of this set consists of a 3-tuple record: (shared

_variable_address, shared_variable_access_instruction_address, access_t

ype), where the shared variable address is either the static memory address in the binary for

global variables or the instruction address of the allocation site for heap variables. The access

type is either R, W , or RW , representing whether the shared variable is read, written, or both.

As listed in Table 4.1 for our working example, there are seven shared variable ac-

cesses, each of which has a variable name, the instruction line number (we use source code

line for the illustration purpose and they should be the instruction address in real binary),

and the read/write type of that access, e.g., there are three accesses on shared variable

global_counter, from line 3, 5, 10, respectively.

Lockset analysis. After identifying shared variables from binary, we need to further iden-

tify the variables that are synchronization-protected and exclude them from the data race

detection. To this end, we need to identify the synchronization primitives (typically locks)

held at each shared variable access, by first identifying the lock variables, through analyzing
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either synchronization function parameters (e.g., global_mutex_0 which is identified as

a lock variable since it is passed to known synchronization function sgx_thread_mutex_l

ock), or through data flow analysis of instruction sequences that forms programmer defined

locks (e.g., instruction sequences with certain xchg instructions). After that, SGX-RACER

generates a lockset and a lock acquisition history for each instruction. A lockset is a set

of possible locks held at each instruction, and a lock acquisition history is a set of locks

acquired (and also possibly released) after the last acquisition of a particular lock. With

these lockset and lock acquisition history sets, SGX-RACER generates the final set of

synchronization protected shared variables, and excludes them from the shared variable

access set, to produce the final detected data races.

4.3 Design

4.3.1 Shared Variable Analysis

To find out data races on shared variables, we first need to detect all shared variable

accesses in the enclave binary, since the data race must come from these shared variable

accesses. Variables in a program can be divided into three categories: global variables,

heap variables, and stack variables. Since stack variables are local, they typically will not

be shared and we just have to analyze global variables and heap variables. To identify (or

index) a global variable, we can use its static memory address, but for heap variables, their

addresses are dynamic and we cannot use their run-time addresses and instead we can use

their allocation site to identify (index) them. Also, since a data race occurs when particular

instructions access an unprotected shared variable, we have to identify the shared variables

at each instruction. A data flow analysis is thus needed to identify the definitions (i.e., the

W accesses) and uses (i.e., the R accesses) of these shared variables among the instructions.
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Algorithm 4 Shared variable analysis
Function SharedVariableAnalysis(binary):

/* Identify shared variable accesses via data flow analysis */
5 foreach instruction i ∈ binary do
6 case i defines v do

// Update variable value
7 Value(v)← Update(Value(v))

// Update shared variables
8 if DestOp(i) ∈ SharedVariable ∧ SrcOp(i) ∈ HeapVariable then
9 SharedVariable← SharedVariable t SrcOp(i)

// If defines a global variable
10 if MemoryAccess(i) ∧ Addr(v) ∈ [global_start, global_end] then
11 SharedVariable← SharedVariable t v

case R /∈MemoryAccess(i) ∧W ∈MemoryAccess(i) do
12 SharedAccess← SharedAccess t (v, i, W)
13 case R ∈MemoryAccess(i) ∧W ∈MemoryAccess(i) do
14 SharedAccess← SharedAccess t (v, i, RW)

// If defines a heap variable
15 if CallInst(i) ∧ CallTarget(i) = malloc then
16 HeapVariable← HeapVariable t v

17 if v ∈ HeapVariable ∧ v ∈ SharedVariable then
18 case R /∈MemoryAccess(i) ∧W ∈MemoryAccess(i) do
19 SharedAccess← SharedAccess t (v, i, W)
20 case R ∈MemoryAccess(i) ∧W ∈MemoryAccess(i) do
21 SharedAccess← SharedAccess t (v, i, RW)

22 case i uses v do
// If uses a global variable

23 if MemoryAccess(i) ∧ Addr(v) ∈ [global_start, global_end] then
24 SharedVariable← SharedVariable t v

case R ∈MemoryAccess(i) do
25 SharedAccess← SharedAccess t (v, i, R)

// If uses a heap variable
26 if v ∈ HeapVariable ∧ v ∈ SharedVariable then
27 case R ∈MemoryAccess(i) do
28 SharedAccess← SharedAccess t (v, i, R)

/* Generate shared variable access pairs */
29 foreach (v, i0, acc0) ∈ SharedAccess ∧ (v, i1, acc1) ∈ SharedAccess do
30 AccessPair← AccessPair t ((v, i0, acc0), (v, i1, acc1))

Therefore, we have designed a data flow analysis based algorithm 4 to identify the

shared variable accesses. At a high level, the algorithm inspects every instruction in enclave

binary and finds variable definitions and variable uses (line 5-28). At each data definition

site, the data flow analysis first updates the variable values according to the corresponding

instruction semantics such as data arithmetic using VSA [3] (line 7). Then at each data

definition (line 8-21) and use site (line 22-28), the algorithm further identifies whether the
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data use of the variable is a global variable or a heap variable, whether the variable is a

shared variable, and whether the access is an R, a W , or both. The output of the data flow

analysis is a set of shared variable accesses, as what have been shown in Table 4.1 for our

working example. Next, we present in greater detail how the algorithm identifies global and

heap variables.

Global variable identification. A global variable is identified at the variable definition

site if the data flow analysis shows the variable address value could be resolved to a value

in binary data sections (data pointers in, e.g., .text) or text sections (code pointers in,

e.g., .data, .bss and .rodata), as shown in line 10-11. Global variables are accessible

from different threads and thus are shared variables on their own. Note that a global

variable can be accessed via direct memory access (e.g., “mov (0x248bb0),%rax” where

0x248bb0 is a global memory address, or indirect access via an instruction sequence (e.g.,

“lea $0x248fa0,%rax” and “mov (%rax),%r8”) where a global address 0x248fa0 is first

loaded into rax, and then dererferenced to load its value into r8. We follow the standard

data flow analysis to identify them.

Having recognized the global variables from the binary, SGX-RACER further needs

to distinguish the different types of the access (i.e., R, W , or RW ) based on each specific

instruction semantics. In particular, at the data definition sites, the data flow analysis checks

whether the variable is written, or both read and written, and if so it assigns the variable

access type with W or RW , as shown in line 11-14; whereas at the data use sites, it only

needs to check whether it is an R access (line 24-25).

Heap variable identification. Heap variables are not necessarily shared across threads, and

only when they are passed through pointer references as function parameters or to a global

variable. As such, SGX-RACER tracks heap variables during the data flow analysis to check
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whether the pointer of a heap variable is passed to a shared variable (e.g., global variable

or function parameter) at the variable definition sites. If so, the heap variable becomes a

shared heap variable (described in line 8-9). For instance, in the following assembly code of

function do_save_tcs:

88d4 <_ZL11do_save_tcsPv >:
...
896a: callq 100b1 <dlmalloc >
896f: mov %rax ,-0x10(%rbp)
...
89a5: mov -0x10(%rbp),%rax
89a9: mov %rax ,(0 x248b48)#<_ZL10g_tcs_node >

a heap variable is allocated at instruction address 896a and not yet a shared variable. Until at

address 89a9, when the heap variable pointer is assigned to a global variable at 0x248b48,

this heap variable becomes a shared variable and any afterwards dereferences of the heap

variable pointer via the global variable at 0x248b48 are shared across threads. Also, similar

to global variables, the data flow analysis further infers the heap variable access type (i.e., R,

W , or RW ) from the instruction semantics (at line 17-21, and line 26-28).

Generating shared variable access pairs. Based on the data flow analysis results, our

shared variable analysis generates possible data race pairs (line 29-line 30), namely shared

variable access pairs, which is a set of access pairs between two threads (i.e., thread0 access

and thread1 access, assuming two threads) on the same shared variable. In particular, if a

shared variable has n accesses, there are totally
(n

2

)
+
(n

1

)
shared variable access pairs for

this variable, i.e., a combination of different shared variable accesses
(n

2

)
plus a combination

of identical shared variable accesses
(n

1

)
.
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Thread0 Thread1

Locksets Lock 
History

Shared Variable Access Shared Variable Access Shared Var. 
Access Pairs

At Least 
a Write

∩Lockset Consistent 
History

Data 
Races

{global_mutex_0} Ø <global_counter, 3, W> <global_counter, 3, W> ✓ {global_mutex_0} × ×

{global_mutex_0} Ø <global_counter, 5, R> <global_counter, 5, R> ✓ {global_mutex_0} × ×

× {global_mutex_0} × ×

{global_mutex_1} Ø <global_counter, 10, W> <global_counter, 10, W> ✓ Ø × ✓

✓ Ø × ✓

✓ {global_mutex_1} × ×

Ø Ø <global_mutex_0, 2, R> <global_mutex_0, 2, R> × Ø × ×

Ø Ø <global_mutex_0, 6, R> <global_mutex_0, 6, R> × Ø × ×

× Ø × ×

Ø Ø < global_mutex_1, 9, R > < global_mutex_1, 9, R > × Ø × ×

Ø Ø < global_mutex_1, 11, R > < global_mutex_1, 11, R > × Ø × ×

× Ø × ×
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Figure 4.4: The step-by-step internal results showing how SGX-RACER detects the two
data races for our working example

For instance, in our working example, the data flow analysis generates in total seven

shared variable accesses, as shown in Table 4.1, where global_counter has three accesses,

global_mutex_0 has two accesses, and global_mutex_1 has two accesses. Then, shared

variable analysis further generates shared variable access pairs for them: global_counter

has
(3

2

)
+
(3

1

)
= 6 entries, global_mutex_0 has

(2
2

)
+
(2

1

)
= 3 entries, and global_mutex_1

has
(2

2

)
+
(2

1

)
= 3 entries, and thus there are 6+3+3 = 12 total entries, as illustrated in

Figure 4.4. We denote the seven shared variable accesses as nodes, and the 12 edges between

nodes shows the combinations of shared variable access pairs, which is also listed in the

sixth column.
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Algorithm 5 Lockset analysis
Function LockAnalysis(binary, AccessPair):

/* Generate locksets and lock acquisition history via data flow analysis */
31 foreach instruction i ∈ binary do
32 if i defines v then

// Update variable value
33 Value(v)← Update(Value(v))

34 if (CallInst(i) ∧ CallTarget(i) = lock) ∨ SelfDefineLock(i) then
// GEN lock variables

35 LockVariable← LockVariable t Op(i)
// GEN locksets

36 LockSet(i)← LockSet(i) t Op(i)
foreach lock l do

37 if l = Op(i) then
// KILL lock acquisition history

38 LockHistory(i,l)← /0
39 else

// GEN lock acquisition history
40 LockHistory(i,l)← LockHistory(i,l) t Op(i)
41 if (CallInst(i) ∧ CallTarget(i) = unlock) ∨ SelfDefineUnlock(i) then

// KILL lock variables
42 LockVariable← LockVariable − Op(i)

// KILL locksets
43 LockSet(i)← LockSet(i) − Op(i)

/* Generate synchronized shared variable access pairs */
44 foreach ((v, l0, acc0), (v, l1, acc1)) ∈ AccessPair do

// check if at least one access is a write
45 if acc0 = R ∧ acc1 = R then
46 SynAccessPair← SynAccessPair t ((v, l0, acc0), (v, l1, acc1))

// check if there are common locks
47 else if LockSet(i) u LockSet(i) 6= /0 then
48 SynAccessPair← SynAccessPair t ((v, l0, acc0), (v, l1, acc1))

// check if lock acquistion histories are consistent
49 foreach different locks la, lb do
50 if la ∈ LockHisotry(i0, lb) ∧ lb ∈ LockHisotry(i1, la) then
51 SynAccessPair← SynAccessPair t ((v, l0, acc0), (v, l1, acc1))

/* Generate data races */
52 DataRace← AccessPair − SynAccessPair

4.3.2 Lockset Analysis

Having generated the shared variable access pairs from variable analysis, SGX-RACER

needs to further find out whether any of them have been protected by synchronization

primitives (essentially locks), and if so remove them from the detection results. To this

end, we have to first identify whether there is any lock associated with the shared variable

accesses. A lock usually has a lock variable. Therefore, essentially we have to perform
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1 /* Enclave.cpp: */
2 void ecall_0(void) {
3 sgx_thread_mutex_lock (& global_mutex_0 );
4 sgx_thread_mutex_lock (& global_mutex_1 );
5 ...
6 sgx_thread_mutex_unlock (& global_mutex_1 );
7 global_counter = 0;
8 sgx_thread_mutex_unlock (& global_mutex_0 );
9 }

10 void ecall_1(void) {
11 sgx_thread_mutex_lock (& global_mutex_1 );
12 sgx_thread_mutex_lock (& global_mutex_0 );
13 ...
14 sgx_thread_mutex_unlock (& global_mutex_0 );
15 global_counter = 1;
16 sgx_thread_mutex_unlock (& global_mutex_1 );
17 }

Figure 4.5: Motivating example of lock acquisition history

liveness analysis of lock variable (§4.3.2.1). If a lock variable is live at the shared variable

access, it means this access is lock protected. With the livenesses of the lock variables, we

then compute the corresponding lockset for the shared variable access. If the intersection

of the lockset of the interleaved shared variable accesses is empty, it means these accesses

are not properly synchronized (leading to data races). As such, we use a lockset analysis

algorithm (§4.3.2.2) to detect the final data race.

4.3.2.1 Liveness Analysis of Lock Variables

There are two sets of lock variables: one is defined by the standardized synchronization

APIs, and the other is defined by programmers. We therefore use the following two strategies

to identify them.
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Identifying lock variables defined by synchronization APIs. SGX SDKs typically pro-

vide a variety of synchronization primitives (as shown in Table 2.1 in ??). Fundamentally, all

of these synchronization primitives can be translated into a lock representation. Therefore, to

have a uniformed algorithm, we have to first translate and map them into locks. Specifically,

1) thread-once is mapped as the call-once function holding a unique mutex lock; 2) barrier

is mapped as holding N mutex locks and N is the number of predefined waiting threads;

3) spinlock is mapped as a mutex lock on the spinlock object; 4) reentrant mutex is also

mapped as a mutex lock; 5) read-write lock is mapped as a read or write lock depending on

whether it is used for read or write; 6) conditional variable is mapped as lock and unlock

operations on the associated conditional variable.

Identifying self-defined lock variables. Besides off-the-shelf synchronization primitives,

SGX program can also use other self-defined synchronization primitives, e.g., locks built

from xchg instruction. To identify them, SGX-RACER scans the binary for xchg, lock

xchg, cmpxchg and lock cmpxchg instructions and considers these instructions to be a

lock synchronization primitive through data flow analysis. A lock or unlock is identified

according to the associated instruction operand. The lock or unlock semantics is based on

the value of the operand (e.g., 1 means lock, and 0 means unlock).

Liveness Analysis of Lock Variable. With the identified lock variables, we perform a

liveness analysis with them. The detailed algorithm is presented in algorithm 5. More

specifically, at each variable definition site, if a lock variable is defined by either standard

APIs or user-defined (line 34), then we generate a GEN set (line 35). This variable will be

live for the remaining instructions until it is killed by either unlock APIs or user-defined

unlocks (line 41), and we correspondingly generate a KILL set (line 42). For instance,

in our working example, line 2 and line 9 are call sites of lock synchronization function
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Intel SGX SDK Open Enclave SDK Rust-SGX SDK Rust EDP SDK Intel SGX SDK Open Enclave SDK Rust-SGX SDK Rust EDP SDK
Variables Variable Distribution

# Shared Var. Access (R) 317 591 362 161 Data Variable libsgx_trts.a (4) liboecore.a (17) libenclave.a (1) std::sys (1)
# Shared Var. Access (W) 119 214 134 21 libtlibc.a (4) liboeenclave.a (3) libsgx_trts.a (4) std::panicking (1)
# Shared Var. Access (R&W) 6 7 16 7 libunwind.a (2) liboelibc.a (2) libtlibc.a (4) std::thread (0)
# Uniq. Shared Var. 143 197 138 81 libcpprt.a (1) liboesyscall.a (1) libunwind.a (1) std::sys_common (0)
# Lock Var. Access (Mutex) 7 9 0 20 libirc.a (6) libmbedcrypto.a (8) libirc.a (1) std::sync (0)
# Lock Var. Access (Spinlock) 53 105 19 0 Total (DV) 17 31 11 2
# Lock Var. Access (Others) 0 4 1 5 Code Pointer libsgx_trts.a (0) liboecore.a (1) libenclave.a (0) std::sys (0)
# Uniq. Lock Var. 9 14 6 1 libtlibc.a (0) liboeenclave.a (0) libsgx_trts.a (0) std::panicking (0)

Lockset and Acquisition History libunwind.a (1) liboelibc.a (0) libtlibc.a (0) std::thread (0)
Ins. Lockset Size (Max.) 2 7 5 1 libcpprt.a (0) liboesyscall.a (0) libunwind.a (1) std::sys_common (0)
Ins. Lockset Size (Min.) 0 0 0 0 libirc.a (0) libmbedcrypto.a (0) libirc.a (0) std::sync (0)
Ins. Lockset Size (Ave.) 0.46 0.36 0.93 0.30 Total (CP) 1 1 1 0
Acqui. History Size (Max.) 8 13 5 0 Total 18 32 12 2
Acqui. History Size (Min.) 0 0 0 0 Function Distribution
Acqui. History Size (Ave.) 3.34 0.1 1.47 0.00 Libraries libsgx_trts.a (8) liboecore.a (34) libenclave.a (2) std::sys (1)

Performance (effectiveness and efficiency) libtlibc.a (6) liboeenclave.a (1) libsgx_trts.a (63) std::panicking (2)
# Detected Data Race Shared Variables 18 32 12 2 libunwind.a (4) liboelibc.a (11) libtlibc.a (73) std::thread (1)
# Detected Data Races 39 134 27 6 libcpprt.a (3) liboesyscall.a (4) libunwind.a (12) std::sys_common (1)
Variable Analysis Time (m) 508.8 12614.4 453.6 441.2 libirc.a (5) libmbedcrypto.a (18) libirc.a (16) std::sync (1)
Data Race Detection Time (m) 0.4 2.2 0.2 0.2 alloc::sync (1)
Total Time (m) 509.2 12616.6 453.8 441.4 Total 26 68 166 7

Table 4.2: Data race detection results for the four SGX SDKs

sgx_thread_mutex_lock and thus global_mutex_0 and global_mutex_1 are generated

API defined lock variables, and they are live at line 3-5 for global_mutex_0, and line 10

for global_mutex_1 because they are killed at line 6 and line 11, respectively.

4.3.2.2 Lockset Analysis.

With the liveness analysis of the lock variables, we could have used them to detect the

races by intersecting the locksets for the shared variable accesses. If the intersection is

empty, it means there is no common lock, resulting in a data race. However, not all shared

variables accesses with empty intersection of locksets are data races. For instance, as shown

in Figure 4.5, the shared variable access at line 7 holds a lockset of {global_mutex_0} and

the access at line 15 holds a lockset of {global_mutex_1}. The intersection of the two

locksets is an empty set, but in fact there is no data race between them. Intuitively, to

reach line 7, thread 0 must have acquired global_mutex_0, which prevents thread 1 from

acquiring it in line 12, and thus line 7 and line 15 cannot execute in parallel and no data race

can occur. Therefore, besides the locksets, we also need to consider the history of when and
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which locks are acquired and released, and a lock acquisition history is thus needed to detect

the data races. This is essentially how the lockset algorithm [51] works.

As such, we have to formally introduce lockset, lock acquisition history, and consistent

lock acquisition histories, and they are defined as follows:

Definitioin 1 (Lockset). Given thread Ti and an instruction I, we define the lockset(Ti, I) to

be the possible set of locks alive at instruction I with thread Ti.

Definitioin 2 (Lock Acquisition History) Given thread Ti and an instruction I, for lock l,

if l ∈ lockset(Ti, I), then we define the lock acquisition history LockHistory(Ti, l) to be the set

of locks that were acquired (and possibly released) by Ti after the last acquisition of l by Ti.

Definitioin 3 (Consistent Lock Acquisition Histories). Given two locks, l0 and l1, their

acquisition histories are consistent if and only if there do not exist locks l0 and l1, such that

l0 is in lock acquisition history of l1 and l1 is in lock acquisition history of l0.

To collect lockset and lock acquisition history, SGX-RACER also relies on the liveness

analysis, as shown in line 35-43. In particular, for lockset, each time when a lock is defined,

the liveness analysis generates (GEN) the lockset (i.e., the lock is added to the lockset), and

kills (KILL) the lockset (i.e., the lock is removed from it) if the lock is unlocked. As for

lock acquisition history, each time when a lock is defined, the liveness analysis kills (KILL)

the lock history for this lock (set it to be empty), and generates (GEN) the lock history for

other locks (add it to the lock history). In this way, the liveness analysis is able to generate

lockset and lock acquisition history for each instruction. As in our working example, for

instance, line 3 has the lockset of {global_mutex_0} since global_mutex_0 is the only

lock acquired (at line 2) and not yet released (at line 6). LockHistory(3, {global_mutex_0})

is empty, since after the last acquisition of lock {global_mutex_0}, no locks are acquired
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(and possibly have been released). The lockset and lock acquisition history for each shared

variable access are listed in Figure 4.4.

Lockset-based Data Race Detection. Our lockset-based data race detection algorithm

(line 44-52) is based on the lockset algorithm in [52], in which for every shared variable

access pair, it checks three conditions: (1) whether one of the accesses is a write (line 45-46),

and (2) whether there is no common lock in the two locksets (line 47-48), and (3) whether the

lock acquisition history for these two instructions are inconsistent (line 49-51). If all of these

conditions are met, SGX-RACER marks the shared variable access pair as a data race. For

instance, in our working example, column six of Figure 4.4 lists 12 shared variable access

pairs that are potential data races. Five of these pairs contains at least a write, eight pairs

have empty lock sets intersections, and none of them have consistent lock acquisition history.

Therefore, two data races are identified since they satisfy the three required conditions,

and these two data races both originated from one shared variable, i.e., global_counter.

Throughout this paper, the number of data races are reported along with the number of

shared variables that contribute to the data races.

4.4 Evaluation

We have implemented SGX-RACER atop angr [101], an open source binary analysis

framework. Currently, SGX-RACER supports four well known SGX SDKs: Intel SGX SDK,

Microsft Open Enclave SDK, Apache Teaclave Rust-SGX SDK, and Fortanix Rust EDP

SDK. SGX-RACER uses angr to parse SGX enclave binary code and performs variable

analysis and data race detection. The source code of SGX-RACER will be made public

available at github.com.
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SGX Applications
# Data Races # Data Races Variable Race Total # Shared Var. # Lock Var. Ave. Ave. Acq.
Shared Vars Analysis (m) Detection (m) Time(m) Access Uniq. Var. Access Uniq. Var. Lockset History

Cryptography
mbedtls-SGX [122] 37 105 205.2 2.4 207.6 138 84 68 3 0.189 0
intel-sgx-ssl [44] 138 646 230.4 3.5 234 477 331 136 4 0.15 0.141
TaLoS [106] 132 471 629.4 6.7 636 417 283 63 7 0.276 0.778
Network
LibSEAL [62] 2 3 138.6 5.4 144 354 352 0 0 0 0
Database
SGX_SQLite [98] 95 356 38.4 1.2 39.6 280 177 34 1 0.007 0.000
stealthdb [104] 2 4 157.8 6.4 164.4 6 5 38 1 0.017 0.000
Learning
SGXDeep [45] 7 24 330.6 6.9 337.8 105 96 29 3 0.599 1.145
Others
hot-calls [39] 0 0 28.8 0.8 29.4 5 5 44 2 0.026 0.000

Table 4.3: Data race detection results for the SGX applications

In this section, we present our evaluation results. In particular, to evaluate SGX-RACER,

we crawled 73 real world SGX projects from github.com, and we found 29 of them set

TCSnum to be 1 in their configuration files. In the rest 44 projects, we select the project that

has at least 10 stars in github.com, yielding only eight projects in total, and we compile

compile these eight projects with Intel SGX SDK (version 2.6) to get their final binaries for

our evaluation. We also additionally analyzed three other SDK libraries from Open Enclave

SDK (7.0.0), Rust-SGX SDK (1.0.8), and Rust EDP SDK (commit dbe1430) to detect

whether the SDK implementations contain any data races for the possible ecalls. All of our

experiments were carried out on a Dell x86-64 PC with eight Intel Core i7-7700 processors

and 32GB memory. The rest of this section is organized as follows: we first present the

detailed effectiveness and efficiency results in §4.4.1 and §4.4.3, and then present a few case

studies to demonstrate how the detected data races could be exploited in §4.4.2.

4.4.1 Effectiveness

Recall that a data race occurs when there are a pair of memory accesses to the same

memory location, such that at least one of them is a write, without any synchronization
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primitives that dictate one memory access precedes another memory access, we evaluate the

effectiveness of SGX-RACER in SGX SDKs and SGX applications.

Detected Data Races in SGX SDKs. We first apply SGX-RACER to detect the data races

in the libraries provided by SGX SDKs. Surprisingly, among them, SGX-RACER have

detected in total 39 races, 134 races, 27 races, and 6 races in these four SDKs, with 18,

32, 12, and 2 shared variables identified that contribute to these data races, as reported in

Table 4.2. Open Enclave SDK has far more data races than the other three SDKs, and we

found a key reason is that a shared variable namely mul_count (which is a unit test variable

left in binary) is involved in 55 data races, consisting 41% of its total detected data races.

To also illustrate how SGX-RACER analyzes these SDKs, we also provided a number of

internal statistics, including the number of shared variable accesses, unique shared variables,

lock variables accesses, unique lock variables, lockset size, etc., in Table 4.2. In particular,

the number of read-only accesses of the shared variable in each SDK are 317, 591, 362,

and 161, respectively. The number of write-only accesses are 119, 214, 134, and 21 and

the number of read & write accesses are 6, 7, 16, and 7. The number of unique shared

variables identified is 143, 197, 138, and 81, respectively. As for lock variable accesses,

SGX-RACER identifies 7, 9, 0, and 20 mutex lock variable accesses, 53, 105, 19, and 0 spin

lock variable accesses, and 0, 4, 1, and 5 other lock variable accesses in Intel SGX SDK,

Open Enclave SDK, Rust-SGX SDK, and Rust EDP SDK, respectively. The unique lock

variables identified are 9, 14, 6, and 1 in four SDKs. We also collected the size of lockset

and lock acquisition history for each instruction in the four SDKs, as shown in Table 4.2.

The maximum size of lockset is 2, 7, 5, and 1 in four SDKs. The minimum size of lockset is

0, 0, 0, and 0 and the average size of the lockset for each instruction are 0.46, 0.36, 0.93,

and 0.30. The maximum size of the lock acquisition history is 8, 13, 5, and 0, respectively.
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The minimum size of the lock acquisition history is 0, 0, 0, 0 and the average size of the

lock acquisition history is 3.34, 0.10, 1.47, and 0.00, respectively.

Finally, to check which libraries these variables and functions belong to, we also man-

ually identified the racing variable and racing functions (shared variable and functions

involved in the data race) in each detected data race in the source code of the four SDKs,

and list the distributions in Table 4.2. Interestingly, some data races come from third-party

libraries, e.g., libirc.a, which is a closed-source library and uses global variables without

concerning thread safety. We also find that some SDKs even leave their unit test code in

binary which involves data races and global variables and those data races have no lock

protection. For instance, Open Enclave SDK binary has global variables such as mul_count

which introduce data races. The testing code left by developers enlarges trusted computing

base (TCB) and attack surface, which should be avoided in a trusted execution environment

such as Intel SGX. Another interesting finding is that even Rust-SGX reuses some code

from Intel SGX SDK, as it alters the compilation configurations, Rust-SGX is compiled to a

different binary, which leads to different race detection results.

Detected Data Races in SGX Applications. Next, we tested SGX-RACER with eight

open source projects collected from github.com. We group these projects into different

categories and present the evaluation results in Table 4.3. As shown in this table, SGX-

RACER detects in total 1,609 data races and 413 contributing variables from these eight SGX

projects. The SGX application with the maximum number of data races is intel-sgx-ssl

(which has 646 data races with 138 contributing variables), and also there are one SGX

application that has 0 data race due to the properly synchronized shared variable accesses.

Similarly when presenting the internal statistics for the SGX SDKs, we also show the

internal statistics for these SGX applications in Table 4.3. We can notice from this table
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that the average number of shared variable accesses is 137.4 with the maximum of 477

(intel-sgx-ssl) and the average number of unique variables is 53.5 with the maximum

of 352 (LibSEAL). As for lock variables, the average number of accesses is 51.5 with

the maximum of 136 (intel-sgx-ssl) and the average number of unique lock variables

identified is 2.6 with the maximum of 7 (TaLoS). Among the eight SGX projects, the average

lockset size is 0.158 with the maximum of 0.599 (SGXDeep) and the average lock acquisition

history is 0.258 with the maximum of 1.145 (SGXDeep).

Analysis of False Positives. To determine whether there are any false positives in our result,

we manually inspected the source code of four SGX SDKs and eight SGX application

projects. The manual inspection follows the criteria below:

• Whether the two memory accesses are on the same shared variable.

• Whether at least one of the two accesses is a write access.

• Whether the two accesses could happen at the same time.

As a result, in four evaluated SGX SDKs, We find 7, 29, 0, and 0 false positives,

rendering a false positive rate of 17.48%. As for the eight SGX projects, we find 16, 7, 0, 3,

0, 1, 0, 0 false positives, with a false positive rate of 1.68%. The overall false positive rate is

3.47%. The false positives are due to two reasons: (1) Initialization routines. For instance,

an initialization routine _GLOBAL__sub_I_tmem_mgmt.cpp in SGX project intel-sgx-

ssl is used to initialize the static variable addr_info_map, which cannot be execute in

parallel with other accesses to this static variable. (2) Dead code. An example in Open

Enclave SDK is mbedtls_ecp_self_test, which is used for unit testing in the mbedtls

library. Even though mbedtls_ecp_self_test is compiled into the enclave code, it cannot
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be called from the enclave entry. The dead code will not race with other functions. Since

SGX SDKs contain more library functions with initialization routines and dead code, SDKs

have higher false positive rates than applications.

4.4.2 Security Case Studies

Certainly, not all data races are exploitable. To determine whether a data race is

exploitable is a separate problem, and requires the analysis of the security impact for

each race. Nevertheless, in the following, we demonstrate with six case studies to show

some of these races can be exploited.

Setting two Rust-SGX enclaves with the same ENCLAVE_ID. In Apache Teaclave Rust-

SGX SDK, SGX-RACER detects a data race on shared variable ENCLAVE_ID in function t

_global_init_ecall, as shown in Figure 4.6a. We can exploit this data race by calling

initialize_enclave in two threads at the same time, which successfully makes two

Rust-SGX enclaves have the same ENCLAVE_ID, as shown in Figure 4.7a.

Crashing oe_shm_malloc in Open Enclave SDK. In Open Enclave SDK, SGX-RACER

detects a data race on shared variable capacity in function oe_shm_malloc and oe_conf

igure_shm_capacity, as shown in Figure 4.6b. We can set capacity to zero in another

thread so that further calls to function oe_shm_malloc will fail, as shown in Figure 4.7b.

This gives the attackers an ability to Denial of Service at the attackers’ discretion.

Corrupting function srand seeds and de-randomizing function random output. In

Open Enclave SDK, SGX-RACER detects a data race on shared variable seed in function

srand and rand in the third party musl libc [78], as shown in Figure 4.6c. We keep setting

the shared variable seed to a chosen value (e.g., 0x0) and successfully derandomized the

rand function’s return value in another thread, as shown in Figure 4.7c. This shows a
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potential devastating security threat that data races could be used to disable pseudo-random

number generation in enclave code.

Changing a callback function from another thread. The code snippet from Open Enclave

SDK in Figure 4.6d has a data race on shared variable _failure_callback. We let one

thread keep updating the failure callback function to NULL pointer. Thus, the failure callback

function in the second thread will be overwritten to NULL and the thread avoids executing

the intended callback function when checking its value at line 8, as illustrated in Figure 4.7d.

This case shows that a data race could even happen on shared pointers which might be more

devastating than non-pointers.

Replacing the built network in deep learning. SGX application intel-sgx-deep-learning [45]

has a data race on shared variable final_net in function ecall_build_network, as shown

in Figure 4.6e. The write of shared variable final_net at line 9 is improperly synchronized

without any lock and an concurrent thread could replace the built network with its own

network, which is later used in deep learning.

Corrupting X509 certificate extension decoding. SGX application ToLoS [106] has a

data race on shared variable in_bc in function ecall_X509_get_ext_d2i as illustrated

in Figure 4.6f. Function ecall_X509_get_ext_d2i is used for decoding X509 certifi-

cate extension with a specific OID, which further calls function X509_get_ext_d2i at

line 4 and assigns the decoding results to shared vairable in_bc at line 6 without proper

synchronization. A malicious thread could corrupt this buffer, leading to an incorrect

decoding.
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4.4.3 Efficiency

We also report the performance of how long SGX-RACER took to analyze these bench-

marks, in both Table 4.2 and Table 4.3. More specifically, Table 4.2 lists the average

processing time of SGX-RACER in four SGX SDKs. The total processing time is 509.2

minutes, 12616.6 minutes, 453.8 minutes, and 441.4 minutes for four SDKs, in which

data race detection phase takes 0.4 minutes, 2.2 minutes, 0.2 minutes, and 0.2 minutes,

respectively. The results show that most of the processing time is used in variable analysis

phase, which takes time to analyze the data flows. Table 4.3 lists the time overhead in eight

SGX applications, and the average total time used in each application is 224.1 minutes and

the maximum total time used is 636.0 minutes (TaLoS). The average variable analysis time

is 219.9 minutes with the maximum of 629.4 minutes (TaLoS) and the average data race

detection time is 4.2 minutes with the maximum of 6.9 minutes (SGXDeep).

84



pub extern "C" fn t_global_init_ecall(
id: u64 , path: * const u8, len: usize)

{
enclave :: set_enclave_id(
id as sgx_enclave_id_t );
let s = unsafe {

let str_slice = slice :: from_raw_parts(
path , len);
str:: from_utf8_unchecked(str_slice)

};
enclave :: set_enclave_path(s);

}

(a) A data race on ENCLAVE_ID in Apache
Teaclave Rust-SGX SDK

bool oe_configure_shm_capacity(
size_t cap) {
...
capacity = cap;
return true;

}

void* oe_shm_malloc(size_t size) {
...
shm.capacity = capacity;
...

}

(b) A data race on capacity in Open Enclave
SDK

static uint64_t seed;

void srand(unsigned s) {
seed = s-1;

}

int rand(void) {
seed = 6364136223846793005 ULL*seed + 1;
return seed >>33;

}

(c) A data race on seed in Open Enclave
SDK

static oe_allocation_failure_call -
back_t _failure_callback;
void oe_set_allocation_failure_call -

back(oe_allocation_failure_call -
back_t function) {
_failure_callback = function;

}
void* oe_malloc(size_t size) {

...
if (_failure_callback)

_failure_callback(__FILE__ ,
__LINE__ , __FUNCTION__ , size);

...
}

(d) A data race on _failure_callback in Open
Enclave SDK

network *final_net;
void ecall_build_network(char *file_string ,

size_t len_string ,
char *weights , size_t size_weights) {
...
network *net = (networ *) malloc(

sizeof(network ));
list *sections = sgx_file_string_to_list(

file_string );
net = sgx_parse_network_cfg(sections );
...
final_net = net;
...

}

(e) A data race in SGXDeep

BASIC_CONSTRAINTS *in_bc = NULL;

void * ecall_X509_get_ext_d2i(X509
*x, int nid , int *crit , int *idx)

{
void* ret = X509_get_ext_d2i(x,

nid , crit , idx);
...
in_bc = (BASIC_CONSTRAINTS *)ret;
out_bc ->ca = in_bc ->ca;
out_bc ->pathlen = in_bc ->pathlen;
...

}

(f) A data race in TaLoS

Figure 4.6: The code snippet in our security case studies
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void* thread_function(void* data) {
initialize_enclave ();

}
int SGX_CDECL main(int argc ,

char *argv []) {
...
/* try to create two threads and

initialize at the same time , will
trigger data race (based on
thread interleaving) */

pthread_create (& threads [0], NULL ,
thread_function , (void *)data);
pthread_create (& threads [1], NULL ,
thread_function , (void *)data);
...

}

(a) PoC for the data race on ENCLAVE_ID.

void ecall_thread_1 ()
{

// malloc
oe_shm_malloc (1000);

}

void ecall_thread_2 ()
{

/* set shm capacity
to zero */

oe_configure_shm_capacity (0);
}

(b) PoC for the data race on capacity.

void ecall_thread_1 ()
{

/* keep setting the seed to a
constant value */

while (1)
srand (100000000000000);

}

void ecall_thread_2 ()
{

while (1)
oe_printf("rand␣returns:␣%d\n",

rand ());
}

(c) PoC for the data race on seed.

void unexpected_callback () {
oe_printf("unexpected_callback

␣␣triggered\n");
}
void ecall_thread_1 () {

/* set the failure callback to
another callback function */

oe_set_allocation_failure_callback(
unexpected_callback );

}
void ecall_thread_2 () {

// trigger the failure callback
oe_malloc(
10000000000000000000000000000);

}

(d) PoC for the data race on _fail-
ure_callback.

Figure 4.7: Proof-of-concept (PoC) code for exploiting detected data races.
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4.5 Summary

We have presented SGX-RACER, which detects data races in enclave code, by system-

atically exploring possible concurrent enclave ecalls from both intended and unintended

thread interleavings. We have implemented SGX-RACER and evaluated it with eight open

source SGX applications and four SGX SDKs, with which SGX-RACER has identified

totally 1,582 data races from 405 contributing shared variables in SGX applications, and 32

data races from 14 shared variables, 105 data races from 24 shared variables, 27 data races

from 12 shared variables, and 6 data races from 2 shared variables in Intel SGX SDK, Open

Enclave SDK, and Rust-SGX SDK, respectively. Such a high alarming number shows that

data race in SGX enclave is a serious problem, and a detection tool such as SGX-RACER

will be useful to help both developers and the community at large identify and fix them.
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Chapter 5: Exploring Value Set Analysis for Capturing Program

Semantics in Binary Similarity Analysis

5.1 Overview

5.1.1 Problem Statement

As summarized in Table 5.1, existing efforts on binary similarity search mostly focus on

within either the same architecture, or the same platform, and they largely focus on tackling

the cross-optimization challenges. Also, most of them focus on structural approaches. In

this work, instead, we aim to tackle the problem of given two binaries, regardless of their

architectures, platforms, compilers, and compiler-optimizations, whether there is any similar

code between them. This is the most difficult problem and we must explore architectural-

neutralized, platform-independent, compiler-agnostic, and optimization-resilient approaches

for cross binary search.

5.1.2 Challenges
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Papers Year CA CP CO VB SB SA DA

Gao et al. [34] 2008      
Hu et al. [40] 2009   
Wang et al. [115] 2009    
Sæbjørnsen et al. [95] 2009    
Jhi et al. [50] 2011    
Chaki et al. [11] 2011   
Zhang et al. [123] 2012     
Khoo et al. [56] 2013    
David et al. [19] 2014   
Luo et al. [71] 2014     
Egele et al. [28] 2014    
Pewny et al. [85] 2015      
David et al. [16] 2016    
Chandramohan et al. [12] 2016      
Su et al. [105] 2016    
Feng et al. [31] 2016     
Eschweiler et al. [30] 2016     
Ding et al. [24] 2016   
David et al. [17] 2017     
Xu et al. [118] 2017     
Ming et al. [75] 2017     
Wang et al. [114] 2017     
David et al. [18] 2018     
Gao et al. [35] 2018      
Liu et al. [66] 2018     
Ding et al. [23] 2019    
Zuo et al. [126] 2019     
Duan et al. [27] 2020    
VDIFF 2021      

Table 5.1: Comparison of existing binary code search works.

C1: Binary syntax differs substantially on different architectures. Nowadays software

programs such as IoT firmware are distributed on various platforms and architectures. Bina-

ries are thus compiled for different architectures and are different in their instruction sets, call-

ing conventions, etc. For instance, Figure 5.1 is a simple example illustrating different assem-

bly code generated from the same source code (Figure 5.1a) for five different architectures.

In particular, instructions ret and retq in x86 and x86-64 return to the address specified

on the stack, while instructions bx, ret and jr in ARM, AArch64, and MIPS return to the

address specified in a register, which is lr, x30 and ra in the example, respectively. When
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char arr [128];
void encrypt ()
{
int i, num1 = 0xaa , num2 = 0xbb;
for(i = 0; i < 0x80; i++){
if(i < 0x40) arr[i] ^= num1;
else arr[i] ^= num2;

}
}

int hash()
{
int i, value = 0, num = 0xcc;
for(i = 0x60; i > 0x20; i--){
arr[i] = (arr[i%8]+ num) % 0x10;
value += arr[i];

}
return value;

}

void salt()
{
int i;
int num []={0x10 ,0x20 ,0x30 ,0x40};
for(i = 0x40;i < 0x80;i++){
arr[i] = num[i % 4];

}
}

(a) Source code

8048430 <encrypt >:
8048430: xor %eax ,%eax
8048432: jmp 8048449
8048438: xorb $0xaa ,0 x8049820 (%eax)
804843f:add $0x1 ,%eax
8048442: cmp $0x80 ,%eax
8048447: je 804845f
8048449: cmp $0x3f ,%eax
804844c:jle 8048438
804844e:xorb $0xbb ,0 x8049820 (%eax)
8048455: add $0x1 ,%eax
8048458: cmp $0x80 ,%eax
804845d:jne 8048449
804845f:repz ret

(b) x86

400620 <encrypt >:
400620: xor %eax ,%eax
400622: jmp 40063b
400628: xorb $0xaa ,0 x601060 (%rax)
40062f:add $0x1 ,%rax
400633: cmp $0x80 ,%rax
400639: je 400654
40063b:cmp $0x3f ,%rax
40063f:jbe 400628
400641: xorb $0xbb ,0 x601060 (%rax)
400648: add $0x1 ,%rax
40064c:cmp $0x80 ,%rax
400652: jne 40063b
400654: repz retq

(c) x86-64

84ac <encrypt >:
84ac:movw r3, #0x96ec
84b0:movs r2, #0
84b2:movt r3, #0
84b6:ldrb r1, [r3 , #0]
84b8:cmp r2, #0x3f
84ba:add.w r2 , r2 , #1
84be:add.w r3 , r3 , #1
84c2:ite le
84c4:eorle.w r1, r1, #0xaa
84c8:eorgt.w r1, r1, #0xbb
84cc:cmp r2, #0x80
84ce:strb.w r1, [r3, #-1]
84d2:bne.n 84b6
84d4:bx lr

(d) ARM

8d8 <encrypt >:
8d8:adrp x2, 0x10000
8dc:mov x0 , #0x0
8e0:mov w5 , #0 xffffffbb
8e4:mov w4 , #0 xffffffaa
8e8:ldr x2 , [x2, #0xfd8]
8ec:mov x3 , x2
8f0:b 910
8f8:ldrb w1, [x0, x3]
8fc:eor w1 , w1 , w4
900: strb w1, [x0, x3]
904: add x0 , x0 , #0x1
908: cmp x0 , #0x80
90c:b.eq 930
910: cmp x0 , #0x3f
914:b.ls 8f8
918: ldrb w1, [x0, x2]
91c:eor w1, w1, w5
920: strb w1, [x0, x2]
924: add x0 , x0 , #0x1
928: cmp x0 , #0x80
92c:b.ne 910
930: ret

(e) AArch64

7b0 <encrypt >:
7b0:lui gp ,0x2
7b4:addiu gp,gp , -32144
7b8:addu gp,gp ,t9
7bc:lw a0 , -32732(gp)
7c0:move a1,zero
7c4:li t0 ,-69
7c8:sltiu v1,a1 ,64
7cc:li a3 ,127
7d0:li a2 ,-86
7d4:beqz v1 ,7f8
7d8:lb v0 ,0(a0)
7dc:xor v0 ,v0,a2
7e0:sb v0 ,0(a0)
7e4:addiu a1,a1 ,1
7e8:lb v0 ,1(a0)
7ec:sltiu v1,a1 ,64
7f0:bnez v1 ,7dc
7f4:addiu a0,a0 ,1
7f8:xor v0 ,v0,t0
7fc:bne a1 ,a3 ,7e4
800:sb v0 ,0(a0)
804:jr ra

(f) MIPS

Figure 5.1: A simple example illustrating assembly code generated from the same source
code across five architectures.

function encrypt calculates “arr[i] ˆ= num1”, the xor instruction accepts two operands

in x86 and x86-64, whereas the eor and xor instructions accept two or three operands in

ARM, AArch64, and MIPS. These differences add architectural noises to binary code search.

Being a value-based approach, VDIFF needs to identify and neutralize these noises.
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mov -0x8(%rbp),%rax
movl $0xa,(%rax)
cmpq $0x0,- 0x10(%rbp)
je 405290

cmpq $0x0,-0x18(%rbp)
jne 405295

mov -0x8(%rbp),%rax
mov -0x10(%rbp),%rdx
mov %rdx,0x28(%rax)
mov -0x8(%rbp),%rax
mov -0x18(%rbp),%rdx
mov %rdx,0x30(%rax)
leaveq
retq

callq 401420

movq $0x60c380,-0x8(%rbp)

push %rbp
mov %rsp,%rbp
sub $0x20,%rsp
mov %rdi,-0x8(%rbp)
mov %rsi,-0x10(%rbp)
mov %rdx,-0x18(%rbp)
cmpq $0x0,-0x8(%rbp)
jne 405278

(a) Compiled with -O0

test %rdx,%rdx
je 4054ad

mov %rsi,0x28(%rdi)
mov %rdx,0x30(%rdi)
add $0x8,%rsp
retq

callq 401400

sub $0x8,%rsp
mov $0x60d440,%eax
test %rdi,%rdi
cmove %rax,%rdi
test %rsi,%rsi
movl $0xa,(%rdi)
je 4054ad

(b) Compiled with -O3

Figure 5.2: CFGs of set_custom_quoting generated from different compiler optimization
levels.

C2: Various compilers and compiler optimizations will greatly change the final bi-

nary code. Today, there are a variety of compilers such as GCC and LLVM. Meanwhile,

modern compilers often provides many optimizations, e.g., GCC version 5.4.0 provides

215 optimization flags and groups them into optimization levels with -O0, -O1, -O2, -O3,

-Ofast, -Og, and -Os for the user’s convenience. Although general developers and also prior

efforts on binary code search only consider -O3 as the most sophisticated optimization

configuration, it only covered 138 optimization flags (for GCC version 5.4.0), which is

only 64% of the total optimization flags. It might be possible for a developer to compile

a program code using non-default optimization levels (by using optimizations not in -O3).

The combination of optimization flags could be 2215 theoretically, which makes it extremely

hard (or infeasible) for a learning based approach to construct all cases. Note that compiler
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optimizations could impose great changes to final binary code. For instance, Figure 5.2a and

Figure 5.2b are control flow graphs of function set_custom_quoting of GNU coreutils

compiled by GCC 5.4.0 under -O0 and -O3 optimizations, respectively. The structure of

CFG changes significantly and the number of edges and nodes also drops sharply which

would greatly hinder structural-analyses such as graph-based similarity analysis.

C3: VSA-signatures need to be properly refined. While using VSA for similarity detec-

tion is intuitive (as it can generate a tuple of value sets for a function at the function exit point

as a signature for similarity comparison), unfortunately some value sets are architecture

noises and should not be involved in similarity comparison. For instance, some value sets

are only about stack offsets which involve architectural information, e.g., the value set

of (⊥, [0x2c,0x2c],⊥) indicates that it has an offset of 0x2c to the current stack, but the

offset might be quite different (e.g., (⊥, [0x400,0x400],⊥)) or even missing in a different

architecture (e.g., in architectures that prefer less register spilling). VDIFF needs to identify

those architecture noises (e.g., value sets representing stack offsets) and tell them apart from

architecture-independent value sets that capture the real semantics of a function.

C4: VSA-signatures need to be efficiently compared. Each per-function tuple of value

sets generated by VSA has hundreds (or even thousands) of value sets. VDIFF has to address

this challenge via an effective way of comparing the value sets (which even might have

quite different sizes). Moreover, value sets are not a trivial quantity. Each value set has a

different upper bound, lower bound, and stride. Comparing two value sets means an overall

comparison over all those dimensions. A value set based binary code search approach

needs to effectively compute the similarity between the two value sets which may be quite

different and need to collectively compare tuples of value sets based on the similarity of
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jmp 8048449
…

movw r3, #0x96ec
movs r2, #0
movt r3, #0
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([0x1,0x40],�,�)
([0x0,0xff], �,�)
([0x1,0x40],�,�)

(�,[0x4,0x4],�) ([0x0,0x0],�, �)
([0x0,0xff], �,�)

([0x0,0x7f],�,�) …

([0x0,0x0],�,�) ([0x0,0xff],�,� )
([0x0,0xff],�,� ) ([0x1,0x40],�,�)
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([0x0,0x0],�,�) ([0x0,0xff],�,� )
([0x0,0xff],�,� ) ([0x1,0x40],�,�)
([0x1,0x40],�,�) ([0x0,0x7f],�,�)
([0x41,0x80],�,�) …
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Figure 5.3: Overview of the workflow of VDIFF.

each individual value set to faithfully represent the similarity between the two pieces of

binary code from different architectures.

5.1.3 Key Insights

Each of the above challenges can be addressed correspondingly in our VSA-based cross-

architecture binary code search approach. In particular, C1 can be addressed via the power

of the value set analysis abstractions. When using VSA, the instruction opcode is abstracted

as a transfer function which changes the value sets at the exit point of the instruction and the

instruction operands are abstracted using a-locs and value sets. As such, the quite different

instructions in different syntax across architectures are all turned into uniformly well-defined

a-locs and value sets.

For C2, compiler optimizations do add noises, e.g., an instruction calculating “a = a +

2” could be split by two a++ instructions, adding an intermediate value set of constant value

1. However, value set analysis could still reason the final effects as “a = a + 2”, since

compiler optimizations do not alter the semantics and the final refined value sets remain the

same. In this way, C2 is mitigated by capturing the final refined value sets in our approach.
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Being a value-based approach, C3 is addressed by designing an architectural neutral-

ization step which identifies and eliminates architecture related value sets, such as stack

addresses, stack adjustment offsets, and code addresses. Thus, the architectural differences

are neutralized, and the remaining refined value sets are considered in comparing value sets

tuples for binary similarity analysis.

To solve C4, we first classify different value sets based on their boundedness (i.e.,

bounded, left-bounded, right-bounded, or unbounded) and we derive individual value set

similarity within each category. Then, we count the similar value sets and dissimilar value

sets in each category. Finally, by further considering tuple features such as tuple ordering

and tuple sizes, a similarity score is generated to faithfully capture the similarity of two

functions in different binary code across different architectures.

5.1.4 Overview

An overview of our VDIFF is illustrated in Figure 5.3. There are three phases of analysis

inside VDIFF: (i) value set analysis (§5.2.1), (ii) architectural neutralization (§5.2.2), and

(iii) similarity detection (§5.2.2). At a high level, the first phase is to perform VSA for each

function of the binary code under analysis. Since VDIFF works at function level, it has to

first carry out the following pre-processing steps: function identification to find function

boundaries in binary code, backward slicing, and function signature identification to establish

missing edges in control flow graph, and function exit identification to locate function returns

or inter-procedural jumps. Then VSA is performed on all identified functions based on

the CFG recovered in pre-processing steps, and the value sets generated via VSA on the

function are collected for further binary similarity analysis. The collected value sets contain
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however architectural information, and those architecture noises are further neutralized and

the remaining value sets are used as a signature for the comparison.

Working Example.. In the following, we use the simple program in Figure 5.1 again with a

particular focus on x86-64 binary code (Figure 5.1c) and AArch64 binary code (Figure 5.1e)

to illustrate how VDIFF performs binary code search across different architectures step by

step. The example has three functions encrypt, hash and salt, which work on a global

array arr containing 128 bytes. Function encrypt encrypts arr by xor-ing each byte in

the array with a number, while function hash calculates hashes for arr by transforming 64

bytes of the array and function salt adds salt to the array by changing the last 64 bytes of

the array, as illustrated in Figure 5.1a. We only list the assembly code of function encrypt

for illustration purpose in Figure 5.1b - Figure 5.1f.

The value set analysis results of function encrypt for x86-64 binary and AArch64

binary are listed in Table 5.2 and Table 5.3, respectively. The value sets are denoted as

3-tuples (Og,Os,Oh), each element of which is the particular offset of global, stack and heap

region, respectively. At the beginning of each binary, an index into the array is assigned

0 as the initial value, as shown in instruction 400620 and 8dc, respectively. After an

unconditional jump, a comparison is made to determine whether the index is greater than

0x3 f or not (instruction at 0x40063b and 910). At this program point, the registers holding

the index value have a value set of ([0x0,0x7f], ⊥, ⊥). Based on the comparison result,

the array element is either xor-ed with 0xaa or 0xbb. In Figure 5.1c, 0xaa and 0xbb are

two immediate values in instruction operands, while in Figure 5.1e, 0xaa and 0xbb are

stored in w4 and w5 register and sign-extended. The w4 and w5 are holding the value sets of

([0xffffffaa,0xffffffaa], ⊥, ⊥) and ([0xffffffbb,0xffffffbb], ⊥, ⊥). Then the array element

is xor-ed with those numbers and stored back as a byte and has a value set of ([0x0,0xff],
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Instruction Abstract Locations Value Sets Arch. Indep.

0x400620 eax ([0x0,0x0], ⊥, ⊥) X
0x400628 (0x601060, ⊥, ⊥) . . . (0x60109f, ⊥, ⊥) ([0x0,0xff], ⊥, ⊥) X
0x40062f rax ([0x1,0x40], ⊥, ⊥) X
0x400633 rax ([0x1,0x40], ⊥, ⊥) X
0x40063b rax ([0x0,0x7f], ⊥, ⊥) X
0x400641 (0x6010a0, ⊥, ⊥) . . . (0x6010df, ⊥, ⊥) ([0x0,0xff], ⊥, ⊥) X
0x400648 rax ([0x41,0x80], ⊥, ⊥) X
0x40064c rax ([0x41,0x80], ⊥, ⊥) X
0x400654 rsp (⊥, [0x8,0x8], ⊥) 7

Table 5.2: VSA of the x86-64 binary of the working example.

⊥, ⊥) since the bytes stored in the global array arr is unknown and the result could be any

value within a byte. The index is later increased and has a value set of ([0x1,0x80], ⊥, ⊥)

and the loop terminates when it reaches 0x80.

In each iteration of our VSA, the value set of every a-loc accessed in each instruction

is merged with newly generated value set in this iteration to represent the possible values an

a-loc has. For instance, in the working example of the x86-64 binary, instruction 40062f has

an a-loc: register rax. In the first iteration, a-loc rax has a value set of ([0x1,0x1], ⊥, ⊥)

and in the second iteration it is ([0x2,0x2], ⊥, ⊥). The two are merged into ([0x1,0x2], ⊥,

⊥) after the second iteration of our analysis and further upcoming value sets are merged the

same way until a fixed point is reached. Then all value sets generated for every instruction

and its corresponding a-locs are collected as an unordered tuple for the next phase analysis.

The second phase is architectural neutralization, which neutralizes value sets generated

by VSA via finding architectural noises and then removing them. As in our working

example, in Table 5.2 and Table 5.3, the 4th-column presents whether the corresponding

final value set is architectural dependent or not. Clearly, value sets such as (⊥, -0x8, ⊥) in
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Instruction Abstract Locations Value Sets Arch. Indep.

0x8d8 x2 ([0x410000,0x410000], ⊥, ⊥) 7

0x8dc x0 ([0x0,0x0], ⊥, ⊥) X
0x8e0 w5 ([0xffffffbb,0xffffffbb], ⊥, ⊥) X
0x8e4 w4 ([0xffffffaa,0xffffffaa], ⊥, ⊥) X
0x8e8 ([0x410fd8,0x410fd8], ⊥, ⊥) ([0x411040,0x411040], ⊥, ⊥) 7

x2 ([0x411040,0x411040], ⊥, ⊥) 7

0x8ec x3 ([0x411040,0x411040], ⊥, ⊥) 7

x2 ([0x411040,0x411040], ⊥, ⊥) 7

0x8f8 (0x411040, ⊥, ⊥) . . . (0x41107f, ⊥, ⊥) ([0x0,0xff], ⊥, ⊥) X
w1 ([0x0,0xff], ⊥, ⊥) X

0x8fc w1 ([0xffffff00,0xffffffff], ⊥, ⊥) X
w4 ([0xffffffaa,0xffffffaa], ⊥, ⊥) X

0x900 (0x411040, ⊥, ⊥) . . . (0x41107f, ⊥, ⊥) ([0x0,0xff], ⊥, ⊥) X
w1 ([0xffffff00,0xffffffff], ⊥, ⊥) X

0x904 x0 ([0x1,0x40], ⊥, ⊥) X
0x908 x0 ([0x1,0x40], ⊥, ⊥) X
0x910 x0 ([0x0,0x7f], ⊥, ⊥) X
0x918 (0x411080, ⊥, ⊥) . . . (0x4110bf, ⊥, ⊥) ([0x0,0xff], ⊥, ⊥) X

w1 ([0x0,0xff], ⊥, ⊥) X
0x91c w5 ([0xffffffbb,0xffffffbb], ⊥, ⊥) X

w1 ([0xffffff00,0xffffffff], ⊥, ⊥) X
0x920 (0x411080, ⊥, ⊥) . . . (0x4110bf, ⊥, ⊥) ([0x0,0xff], ⊥, ⊥) X

w1 ([0xffffff00,0xffffffff], ⊥, ⊥) X
0x924 x0 ([0x41,0x80], ⊥, ⊥) X
0x928 x0 ([0x41,0x80], ⊥, ⊥) X

Table 5.3: VSA of AArch64 binary of the working example.

rsp are stack addresses and are architectural noises. And values representing code and data

addresses are also architectural noises. Such examples include value set (⊥, [0x4,0x4], ⊥)

in Table 5.2 as it represents a stack address, and value sets ([0x410000,0x410000], ⊥, ⊥)

and ([0x411040,0x411040], ⊥, ⊥) in Table 5.3 as they represent global addresses. Thus, in

our neutralization phase, we identify all those architectural noises and remove them from

our final value sets. After this refinement, value sets are grouped into an unordered tuple as

our vectorized representation for this function. For x86-64 and AArch64 binary code in our

working example, the two unordered tuples (denoted as T0 and T1) are:
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T0: (([0x0,0x0], ⊥, ⊥), ([0x0,0xff], ⊥, ⊥) . . . ([0x0,0xff], ⊥, ⊥),
([0x1,0x40], ⊥, ⊥), ([0x1,0x40], ⊥, ⊥), ([0x0,0x7f], ⊥, ⊥),
([0x41,0x80], ⊥, ⊥), ([0x41,0x80], ⊥, ⊥))

T1: (([0x0,0x0], ⊥, ⊥), ([0x0,0xff], ⊥, ⊥) . . . ([0x0,0xff], ⊥, ⊥),
([0xffffffbb,0xffffffbb], ⊥, ⊥), ([0xffffffbb,0xffffffbb], ⊥, ⊥),
([0xffffffaa,0xffffffaa], ⊥, ⊥), ([0xffffffaa,0xffffffaa], ⊥, ⊥),
([0xffffff00,0xffffffff], ⊥, ⊥), ([0xffffff00,0xffffffff], ⊥, ⊥),
([0xffffff00,0xffffffff], ⊥, ⊥), ([0xffffff00,0xffffffff], ⊥, ⊥),
([0x1,0x40], ⊥, ⊥), ([0x1,0x40], ⊥, ⊥), ([0x0,0x7f], ⊥, ⊥),
([0x41,0x80], ⊥, ⊥), ([0x41,0x80], ⊥, ⊥))

The value sets come from: values read/written from/to memory cells in heap, stack, global

region, or registers. Note that VSA is flow-sensitive and per-instruction. We are particularly

interested in the value sets for each executed instruction, since they represent the whole

computed semantic values for the function. Back to our working example, we will collect

the value sets encountered for each instruction from the entry point to the exit point of the

function. The lower bound of the number of the VSA a function could have depends on the

number of identified memory addresses and registers encountered during the analysis of the

function.

The third phase is to calculate the binary code (at function level) similarity based on

pairwise similarity metrics. The similarity metrics calculate a score based on how many

value sets are the same for two compared functions. The rationale is the more value sets in

common for the two functions, the more similar are for them. As for the working example,

for instance, for the above two tuples (i.e., T0 and T1), T0 has 134 value sets in common with

T1, i.e., as shown in Table 5.2, 1 value set of ([0x0,0x0], ⊥, ⊥) which is also in T1, 128 value

sets of ([0x0,0xff], ⊥, ⊥), 2 value sets of ([0x1,0x40], ⊥, ⊥), 1 value set of ([0x0,0x7f], ⊥,

⊥) and 2 value sets of ([0x41,0x80], ⊥, ⊥) and therefore 1+128+2+1+2 = 134. T1 has

272 (1+2+2+258+4+2+1+2 = 272) value sets in common with T0. These counts for
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the two tuples are fed into a formula (which is described in §5.2.3) to generate a similarity

score. Assume a given binary has N function, and there are M architectures. The similarity

metrics for each function among these architectures are calculated pairwise, resulting C2
N·M

similarity scores. For each binary, the similarity scores are sorted and functions with the

top score are considered similar functions.

5.2 Design and Implementation

5.2.1 Value Set Analysis

Pre-processing.. To generate value sets for our similarity analysis, we first perform multiple

pre-processing steps, and this includes function identification, CFG reconstruction, and

function exits identification. The function identification is based on angr [101] which

generates a function list with instructions identified for each function. Then we reconstruct

control flow graph (CFG) for each identified function based on the given binary and resolving

the possible control flow targets using the Ramblr [112] approach. After reconstructing

CFG, inter-procedural control flow transfers are identified, such as inter-procedural jumps,

inter-procedural calls and returns, which is later used in value set analysis.

Value Set Analysis.. Based on the CFG generated from pre-processing, VDIFF performs an

intra-procedural VSA since this could form a more efficient binary similarity analysis than

inter-procedural VSA and meanwhile those computed value sets within a procedural can

already form strong signatures (according to our experimental results).

The VSA in VDIFF is described in algorithm 6. Specifically, the initial value sets for

the entry instruction is initialized with an initial stack pointer, an initial empty heap, and an

initial memory cell value of (>,>,>) (line 53). The main part of the algorithm (line 53-59)

is of work list style with multiple iterations on each instruction until a fixed point is reached.
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Algorithm 6 The Value Set Analysis in VDIFF

Function VSA(CFG):
input :control flow graph CFG, value set ValueSet, function func, context
output :ValueSet[i] for each instruction i

53 ValueSet = Init()
worklist = {entryInst}
while worklist 6= /0 do

54 i← pop(worklist)

55 if condInst(i) then
56 ValueSetiexitn = ValueSetientry uV S ValueSetcn

57 else
58 newValueSetiexit = EXE(

⊔
entryn∈entry

ValueSetientryn )

if newValueSetiexit 6= ValueSetiexit then
59 ValueSetiexit ← ValueSetiexit t newValueSetiexit

push(worklist, succs(i))
60 for each i ∈ Inst do
61 ValueSetichanged ← changed(ValueSeti)

record(ValueSetichanged)

Each iteration handles one instruction based on the type of the instruction. Particularly, if

the instruction i is a conditional jump, the value set at the exit point of the instruction is

further confined with the corresponding path constraint (line 55-56). Otherwise, the value

set at the exit point of the instruction is generated based on the semantics of the instruction,

which is used as a transfer function in VSA (line 57-58).

As VSA is flow-sensitive and per-instruction, it is nontrivial to capture the impact of

each instruction as a transfer function. We thus leverage the semantics of each instruction

to implement our VSA transfer function. As shown in line 58 of algorithm 6, all incoming

value sets are merged on a per register and memory cell basis and are fed into the transfer

function to generate output value sets for each instruction.

After analyzing an instruction, the value sets of each register and memory cell could

be changed based on the semantics of the instruction. Next, we check if the value sets are
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changed by comparing with earlier value sets; if so, the newly-calculated value sets are

merged with the earlier value sets and the successors of this instruction is pushed into the

work list for further iterations (line 58-59). Note that since our VSA is an intra-procedural

analysis, calls to other functions return at once with fresh unconstrained value sets, and it

stops further propagating of value sets when encountering returns or inter-procedural jumps.

After the work list algorithm finishes, VDIFF collects the final value sets generated by

VSA for each instruction in the function (line 60-61). Since our algorithm aims to collect the

value sets influenced by the current function, we only collect the value sets that are changed

during VSA, i.e., if the value set of an abstract location remains unchanged, we consider it

is not influenced by the current function (line 61).

The collected value sets are stored in an unordered tuple as our vectorized representation

for this function. Our value sets collection has the following two considerations: (1) we do

not collect the specific location and specific changes, since across different architectures

and different compiler optimizations the location for storing a particular data object can be

different, even between registers and memory cells; (2) we do not put value sets in a set

which otherwise will remove the duplicated value sets, since different abstract locations can

surely have the same value sets and we would like to count those variables even though they

have the same value sets.

5.2.2 Architectural Neutralization

After collecting the value sets of our interest at the function exit, VDIFF neutralizes these

value sets by removing architectural related ones. The value sets in collected unordered

tuples are either addresses or quantities, and only address related ones need to be neutralized.

In particular, these address related value sets including the following three categories:
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• Stack address. Stack addresses are introduced when a program adjusts the stack

pointer or access variables stored on the stack. While some architecture favors stack,

other architecture may prefer registers. Thus, when analyzing binaries compiled from

the same source code for different architectures, a variable could be stored in certain

stack address in some architecture, whereas the same variable may be allocated in

registers in another architecture. For example in the working example x86-64 binary,

(⊥, [-0xc,-0xc], ⊥) and (⊥, [-0x10,-0x10], ⊥) represent stack addresses and might

be changed in different architectures and thus we remove them in our final value set

tuples for this function.

• Heap address. Heap addresses are subject to changes in different architectures, and

are different even across different runs of the same binary. For instance, heap allo-

cations are done each time at runtime and thus the start address of a heap allocation

is unknown (though we can assign a static symbol address). Also, due to the different

word size of each architecture, the data object within a heap allocation may have

different offset. Therefore, heap addresses are architecture specific which involves

runtime information and the addresses do not contribute to the semantics of the func-

tion in binary code. For instance, a value set of (⊥, ⊥, [0x4,0x4]) is neutralized in

this phase as it is subject to changes in different architectures.

• Global address. Global variable address could be .data segment address which con-

tains initialized variables, .bss segment address which holds uninitialized variables,

or .text segment address which has executable instructions. The layout of the final

binary totally depends on architecture specific details, compiler optimizations and

compiler backends and are thus architecture specific. For example, assume .data
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segment starts with address 0x400100 and ends with address 0x400300. A value

set of ([0x400200,0x400200], ⊥, ⊥) is removed as the binary layout depends on the

architecture it is compiled. Addresses that is not directly within a global address, e.g.,

0x400000, could also be used by the program to calculate variable addresses. These

addresses are architectural dependent and should be removed. However, distinguish-

ing integer value and global address (i.e., symbolization) is non-trivial and we take

Ramblr [112] approach, which recognizes an integer to be a global address if the

integer falls within a slightly enlarged global memory region (e.g., 4KB). And thus

0x400000 is within the enlarged .data segment starting at 0x3ff100 and ending at

0x401300 and gets removed in architectural neutralization phase.

These address value sets depend on either architecture specifications or compiler im-

plementations, and therefore not suitable for capturing the semantics of the binary. VDIFF

neutralizes the architectural features by eliminating the address value sets in the above

three categories. After the neutralization, the unordered tuple has fewer elements yet still

represents the semantics of the binary code.

Handling word size differences and sign bit.. Since VDIFF deals with both 32-bit and

64-bit architectures, the value representation can appear different for the same value (e.g.,

-1 is represented as 0xffffffff in 32 bit machine, and 0xffffffffffffffff in 64 bit

machine). Therefore, we have to properly normalize them for the comparison.

In particular, if the binaries have the same word size (e.g., both 32 or 64), we still

compare them as usual. Only when one of them is 32-bit, then we will extend all of the

32-bit value to 64-bit by using the standard sign-extension algorithm, which increases the

number of bits of a binary number while preserving the number’s sign (positive/negative)

and value. Unfortunately, we face another challenge here depending on the number to be
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extended is signed or unsigned. For signed numbers such as -1 and -2, using the standard

sign-extension algorithm incurs no problem. However, for unsigned number, when extend-

ing them, e.g., UINT32_MAX in 32-bit binaries, VDIFF will sign extend it to a different

number UINT64_MAX, which leads to a different value. In contrast, if it is unsigned, we

should have used the zero-extension instead of sign-extension.

Therefore, ideally, if we can know the signedness of the number, we can correspondingly

perform either sign-extension or zero-extension to convert the 32-bit to 64-bit. However, at

the binary code level, it is challenging to perform such inference. For instance, in x86, only

few instructions such as jg or ja can possibly reveal the signedness of values. While we

wish VDIFF is able to perform such inference, currently we ignore such analysis and instead

we perform both sign-extension and zero-extension for the same 32-bit number. If we find

a match in the corresponding 64-bit machine for either value, we regard it as a match.

5.2.3 Similarity Detection

Based on the unordered tuples generated from the previous phases, the similarity detec-

tion phase converts pairs of unordered tuples into a similarity score to measure how similar

two functions are in binary code.

VDIFF uses Jaccard index to compare similarity. Jaccard index is a statistic used in

calculating the similarity of two sample sets. Based on the unordered tuples T0 and T1 in our

working example, the corresponding sets s0 and s1 are:

s0: (([0x0,0x0], ⊥, ⊥), ([0x0,0xff], ⊥, ⊥),
([0x1,0x40], ⊥, ⊥), ([0x0,0x7f], ⊥, ⊥),
([0x41,0x80], ⊥, ⊥))

When comparing two sets s0 and s1, Jaccard index can be denoted as:
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s1: (([0x0,0x0], ⊥, ⊥), ([0x0,0xff], ⊥, ⊥),
([0xffffffbb,0xffffffbb], ⊥, ⊥),
([0xffffffaa,0xffffffaa], ⊥, ⊥),
([0xffffff00,0xffffffff], ⊥, ⊥),
([0x1,0x40], ⊥, ⊥), ([0x0,0x7f], ⊥, ⊥),
([0x41,0x80], ⊥, ⊥))

J(s0,s1) =
|s0∩ s1|
|s0∪ s1|

Regarding the working example in Figure 5.1, we thus have:

|s0∩ s1|= 5 |s0∪ s1|= 8 J(s0,s1) =
5
8
= 0.625

To gain an intuition about VDIFF similarity analysis, we draw a heat map illustrating

the similarity results with different architecture binary code of the working example, as

shown in Figure 5.4. Listed horizontally from left to right and vertically from top to down

in the heat map are the 3 functions, labeled as encrypt, hash and salt with different archi-

tectures and compiler optimization levels appended. The darkness of the cubes represents

the similarity of the corresponding function pairs. The darker the cube is, the more similar

the corresponding functions are. From Figure 5.4, we can observe that VDIFF has clearly

identified the similar functions among different architectures.

5.2.4 Implementation

We have implemented VDIFF, which disassembles binary code using binary disassembler

capstone [92], resolves memory regions and abstract locations [1, 20–22, 89, 99], builds

transfer functions for each instruction to capture its semantics, performs value set analysis

to generate value set tuples for each function, neutralizes value set tuples, and calculates

the similarity scores. Note that while there are a few open source VSA implementations,

e.g., VSA in angr [101, 112] and the recent DeepVSA [37], we do not reuse them directly
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Figure 5.4: Similarity scores generated by VDIFF for the working example across different
architectures and optimization levels.

when building VDIFF because they do not satisfy our needs. For instance, angr’s VSA

does not reason about the abstract locations on the heap. Thus, we build our VDIFF from

scratch, which strictly conforms to the concepts of value set analysis and is a pure static

analysis framework. VDIFF’s implementation comprises 6,000 lines of Python code, and

supports binary code search over five architectures: x86, x86-64, ARM, AArch64, and

MIPS. In support of open science, the source code of VDIFF will be made public available

at github.com.
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5.3 Evaluation

In this section, we present our evaluation results. We first describe the benchmarks

used in our evaluation (§5.3.1), followed by a systematic evaluation with respect to the

effectiveness (§5.3.2), in which we evaluate VDIFF when facing cross-architecture binaries.

5.3.1 Experimental Setup

Benchmark I. To evaluate the effectiveness of VDIFF, we use coreutils (v8.29) program

suite, which we evaluated 107 binaries for each architecture.

All of these programs are compiled with GCC 5.4.0, the default compiler in Ubuntu

16.04, for all five architectures and with three compiler optimization levels O1–O3. This

version of GCC has also been used by other related work such as DeepBinDiff [27].

Machine Configuration. Our experiments were conducted on an 8-core 3.60 GHz Intel i7

machine with 32 GB memory, and Ubuntu 16.04 LTS.

5.3.2 Effectiveness

To examine the effectiveness of VDIFF, we run it on a number of architecture, optimiza-

tion level, and platform pairs. Since we have source code for all the programs in benchmark I

and benchmark II, we collect the ground truth using function symbol information. Binary

functions f and g are defined as similar, written f ∼ g, when functions f and g were

compiled from the same source code function.

VDIFF identifies a target function f in architecture α to be the similar function of g in

architecture β if it has the largest similarity score with function g among all functions in

α . True positives (TP) and true negatives (TN) occur when VDIFF identifies f as similar to

g when f ∼ g, and identifies f as dissimilar to g when f 6∼ g, respectively. Inversely, false
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positives (FP) and false negatives (FN) occur when VDIFF misidentifies f and g as similar

even though f 6∼ g, and misidentifies f and g as dissimilar even though f ∼ g, respectively.

We define precision (P), recall (R), and F1-score (F1) in the standard ways:

P =
TP

TP+FP
R =

TP
TP+FN

F1 = 2
P ·R
P+R

Since we only select the function with the largest similarity score for each match, and we

have the ground truth, we can calculate VDIFF’s overall precision rate and recall rate for

all covered functions, each of which has more than a specified value set tuple size (e.g., 10,

100, etc.).
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Figure 5.5: Different value set sizes distribution of coreutils x86 binaries.

5.3.2.1 Distribution of value set tuple sizes

Our evaluation focuses on higher-complexity functions, where complexity is measured

by value set tuple size, since these are often the functions that pose the greatest challenge for

similarity detection. For example, functions with many value sets typically have complex
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Figure 5.6: Different value set sizes distribution of coreutils x86-64 binaries.
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Figure 5.7: Different value set sizes distribution of coreutils ARM binaries.

code structures containing many value assignments, which can raise accuracy problems for

structure-based approaches and coverage problems for dynamic approaches. Figure 5.5,

Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9 show the ubiquity of such functions by

plotting the distribution of functions with different VSA sizes for architecutures x86, x86-64,
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Figure 5.8: Different value set sizes distribution of coreutils AArch64 binaries.
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Figure 5.9: Different value set sizes distribution of coreutils MIPS binaries.

ARM, AArch64, and MIPS, where the y-axis measures the value set tuple size and the x-axis

measures the percent of functions covered. Most functions have value set tuple sizes 25 or

smaller (after architectural neutralization of the value sets).
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Figure 5.10: Binary code clone search ranking (starts from 0 as most similar).

5.3.2.2 Cross-architecture Evaluation

The y-axis of Figure 5.10 shows the target function ranking in our binary code search

over coreutils 8.29, i.e., if the rank is 0, it means we successfully matched the binary

function, and if the rank is smaller than 10, we find the target function within top 10 function

candidates using value sets generated by VSA.

Table 5.4 lists ranking statics, and we observe 36.95% of functions find the correct

matching in binary code search, 59.34% of functions rank the matching function within top

10 candidates, and 84.47% of functions rank the matching function within top 50 candidates.

rank = 0 rank < 10 rank < 50

Percentage 36.95% 59.34% 84.47%

Table 5.4: The statistics of target function ranking in binary code search.
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5.4 Summary

Existing binary similarity analysis approaches largely focused on extracting syntactical

or structural features of the binary such as control flow graph. We observe that the value

sets written to abstract locations such as registers and memory cell locations can form a

unique signature and survive in syntactically different binaries. In this paper, we present

a novel binary code cross-search approach named VDIFF that identifies similar functions

across different architectures based on the results generated from value set analysis. We

have implemented a prototype of VDIFF by performing value set analysis, architectural

neutralization, and similarity detection on five architectures. The evaluation shows that

VDIFF has a superior accuracy in binary code search.
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[51] Vineet Kahlon, Franjo Ivančić, and Aarti Gupta. Reasoning about threads communi-
cating via locks. In Proceedings of the 17th International Conference on Computer
Aided Verification, CAV’05, pages 505–518, Berlin, Heidelberg, 2005. Springer-
Verlag.

[52] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. Fast and
accurate static data-race detection for concurrent programs. In Proceedings of the
19th International Conference on Computer Aided Verification, CAV’07, pages 226–
239, Berlin, Heidelberg, 2007. Springer-Verlag.

[53] Ulf Kargén and Nahid Shahmehri. Towards robust instruction-level trace alignment
of binary code. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, page 342–352. IEEE Press, 2017.

[54] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. libdft: Practical dynamic data flow tracking for commodity systems.
In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, VEE ’12, pages 121–132, New York, NY, USA, 2012. ACM.

[55] Mustakimur Rahman Khandaker, Yueqiang Cheng, Zhi Wang, and Tao Wei. COIN
Attacks: On Insecurity of Enclave Untrusted Interfaces in SGX. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, pages 971–985, New York, NY,
USA, 2020. Association for Computing Machinery.

[56] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A search engine for binary
code. In 2013 10th Working Conference on Mining Software Repositories (MSR),
pages 329–338, May 2013.

[57] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Polymorphic worm detection using structural information of executables. In

118



Alfonso Valdes and Diego Zamboni, editors, Recent Advances in Intrusion Detection,
pages 207–226, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[58] Yonghwi Kwon, Weihang Wang, Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu.
CPR: Cross platform binary code reuse via platform independent trace program. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2017, page 158–169, New York, NY, USA, 2017. Association
for Computing Machinery.

[59] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[60] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho Choi,
Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. Hacking in darkness:
Return-oriented programming against secure enclaves. In 26th USENIX Security
Symposium (USENIX Security 17), pages 523–539, Vancouver, BC, August 2017.
USENIX Association.

[61] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack provenance
via binary-based execution partition. In 20th Annual Network and Distributed System
Security Symposium, 2013.

[62] LibSEAL, 2018. https://github.com/lsds/LibSEAL.

[63] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering
of data structures from binary execution. In Proceedings of the 17th Network and
Distributed System Security Symposium, NDSS’10, 2010.

[64] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, Christof Fetzer, and Peter Pietzuch. Glamdring: Automatic application
partitioning for Intel SGX. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 285–298, Santa Clara, CA, 2017. USENIX Association.

[65] Martina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Milani Com-
paretti, and Stefano Zanero. Lines of Malicious Code: Insights into the malicious
software industry. In Proceedings of the 28th Annual Computer Security Applications
Conference, ACSAC ’12, page 349–358, New York, NY, USA, 2012. Association for
Computing Machinery.

[66] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and
Wei Zou. αDiff: Cross-version binary code similarity detection with DNN. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, pages 667–678, New York, NY, USA, 2018. ACM.

119

https://github.com/lsds/LibSEAL


[67] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li,
Raluca A. Popa, and Yuanyuan Zhou. MUVI: Automatically inferring multi-variable
access correlations and detecting related semantic and concurrency bugs. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, pages 103–116, New York, NY, USA, 2007. ACM.

[68] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics. In Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIII, pages 329–339, New York, NY,
USA, 2008. ACM.

[69] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: Detecting atomicity
violations via access interleaving invariants. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XII, pages 37–48, New York, NY, USA, 2006. ACM.

[70] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[71] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. Semantics-based
obfuscation-resilient binary code similarity comparison with applications to software
plagiarism detection. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages 389–400, New
York, NY, USA, 2014. ACM.

[72] Microsoft. Open Enclave SDK, 2020. https://openenclave.io/sdk/.

[73] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and Peng Liu. StraightTaint:
Decoupled offline symbolic taint analysis. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, pages
308–319, New York, NY, USA, 2016. ACM.

[74] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. TaintPipe:
Pipelined symbolic taint analysis. In 24th USENIX Security Symposium (USENIX
Security 15), pages 65–80, Washington, D.C., 2015. USENIX Association.

[75] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. BinSim: Trace-based
semantic binary diffing via system call sliced segment equivalence checking. In 26th
USENIX Security Symposium (USENIX Security 17), pages 253–270, Vancouver, BC,
2017. USENIX Association.

120

https://openenclave.io/sdk/


[76] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How
SGX amplifies the power of cache attacks. In 19th International Conference on
Cryptographic Hardware and Embedded Systems - CHES 2017, pages 69–90, 2017.

[77] Paul Muntean, Matthias Fischer, Gang Tan, Zhiqiang Lin, Jens Grossklags, and
Claudia Eckert. τCFI: Type-assisted control flow integrity for x86-64 binaries. In
Research in Attacks, Intrusions, and Defenses, pages 423–444. Springer International
Publishing, 2018.

[78] musl-libc. musl-libc, 2020. https://www.musl-libc.org/.

[79] S. Nagy and M. Hicks. Full-speed fuzzing: Reducing fuzzing overhead through
coverage-guided tracing. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 787–802, May 2019.

[80] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java.
In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’06, pages 308–319, New York, NY, USA, 2006.
ACM.

[81] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In Proceedings
of the Network and Distributed Systems Security Symposium, 2005.

[82] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David Evans.
Automatically hardening web applications using precise tainting. In Ryoichi Sasaki,
Sihan Qing, Eiji Okamoto, and Hiroshi Yoshiura, editors, Security and Privacy in the
Age of Ubiquitous Computing, pages 295–307, Boston, MA, 2005. Springer US.

[83] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In
Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’03, pages 167–178, New York, NY, USA, 2003.
ACM.

[84] Andre Pawlowski, Victor van der Veen Moritz Contag, Thorsten Holz Chris Ouwe-
hand, Herbert Bos, Elias Athanasopoulos, and Cristiano Giuffrida. MARX: Un-
covering Class Hierarchies in C++ Programs. In Proceedings of the 24th Annual
Symposium on Network and Distributed System Security (NDSS’17), 2017.

[85] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-architecture bug
search in binary executables. In 2015 IEEE Symposium on Security and Privacy,
pages 709–724, May 2015.

[86] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian Rossow.
Leveraging semantic signatures for bug search in binary programs. In Proceedings

121

https://www.musl-libc.org/


of the 30th Annual Computer Security Applications Conference, ACSAC ’14, page
406–415, New York, NY, USA, 2014. Association for Computing Machinery.

[87] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection attacks
through context-sensitive string evaluation. In Recent Advances in Intrusion Detection,
pages 124–145, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[88] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: An emulator for
fingerprinting zero-day attacks for advertised honeypots with automatic signature
generation. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems 2006, EuroSys ’06, pages 15–27, New York, NY, USA, 2006.
ACM.

[89] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, and
Wenke Lee. RAZOR: A framework for post-deployment software debloating. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1733–1750, Santa Clara,
CA, August 2019. USENIX Association.

[90] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng
Wu. LIFT: A low-overhead practical information flow tracking system for detecting
security attacks. In Proceedings of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 39, pages 135–148, Washington, DC, USA,
2006. IEEE Computer Society.

[91] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. VoltJockey: Breach-
ing TrustZone by Software-Controlled Voltage Manipulation over Multi-Core Fre-
quencies. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, pages 195–209, New York, NY, USA, 2019.
Association for Computing Machinery.

[92] Nguyen Anh Quynh. Capstone: the ultimate disassembly framework. http://www.
capstone-engine.org/, 2018.

[93] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.,
16(5):1467–1471, September 1994.

[94] Sanjay Rawat, Laurent Mounier, and Marie-Laure Potet. Static taint-analysis
on binary executables. http://stator.imag.fr/w/images/2/21/Laurent_
Mounier_2013-01-28.pdf, October 2011.

[95] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and Zhen-
dong Su. Detecting code clones in binary executables. In Proceedings of the Eigh-
teenth International Symposium on Software Testing and Analysis, ISSTA ’09, pages
117–128, New York, NY, USA, 2009. ACM.

122

http://www.capstone-engine.org/
http://www.capstone-engine.org/
http://stator.imag.fr/w/images/2/21/Laurent_Mounier_2013-01-28.pdf
http://stator.imag.fr/w/images/2/21/Laurent_Mounier_2013-01-28.pdf


[96] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. ZeroTrace: Oblivious
Memory Primitives from Intel SGX. In NDSS, 2018.

[97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multi-threaded programs. In
Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles,
SOSP ’97, pages 27–37, New York, NY, USA, 1997. ACM.

[98] SGX_SQLite, 2018. https://github.com/yerzhan7/SGX_SQLite.

[99] Bor-Yeh Shen, Wei-Chung Hsu, and Wuu Yang. A retargetable static binary translator
for the arm architecture. ACM Trans. Archit. Code Optim., 11(2), June 2014.

[100] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs. In NDSS, 2017.

[101] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. In IEEE Symposium on Security and Privacy, 2016.

[102] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic excavator
for reverse engineering data structures. In Proceedings of the Network and Distributed
Systems Security Symposium, 2011.

[103] Asia Slowinski, Traian Stancescu, and Herbert Bos. Body armor for binaries: pre-
venting buffer overflows without recompilation. In Presented as part of the 2012
{USENIX} Annual Technical Conference ({USENIX}{ATC} 12), pages 125–137,
2012.

[104] stealthdb, 2019. https://github.com/cryptograph/stealthdb.

[105] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail Kaiser,
and Tony Jebara. Code Relatives: Detecting similarly behaving software. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, pages 702–714, New York, NY, USA, 2016. ACM.

[106] TaLoS, 2019. https://github.com/lsds/TaLoS.

[107] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guilherme
Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani, and David I. August.
RIFLE: An architectural framework for user-centric information-flow security. In
Proceedings of the 37th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 37, pages 243–254, Washington, DC, USA, 2004. IEEE Computer
Society.

123

https://github.com/yerzhan7/SGX_SQLite
https://github.com/cryptograph/stealthdb
https://github.com/lsds/TaLoS


[108] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A practical attack
framework for precise enclave execution control. In Proceedings of the 2Nd Workshop
on System Software for Trusted Execution, SysTEX’17, pages 4:1–4:6, New York,
NY, USA, 2017. ACM.

[109] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying Microarchi-
tectural Timing Leaks in Rudimentary CPU Interrupt Logic. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
’18, pages 178–195, New York, NY, USA, 2018. ACM.

[110] Victor van der Veen, Dennis Andriesse, , Enes Göktaş, Ben Gras, Lionel Sambuc,
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